|Table of Contents|

Comparative study of typical numerical integration methods of flexible multi-body systems dynamics

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2016年06期
Page:
726-
Research Field:
Publishing date:

Info

Title:
Comparative study of typical numerical integration methods of flexible multi-body systems dynamics
Author(s):
Guo XianZhang Dingguo
School of Sciences,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
flexible multibody systems dynamics numerical integration hub-flexible beam system Lagrange's equations of the second kind explicit methods implicit methods time step generalized mass matrices
PACS:
O313.7
DOI:
10.14177/j.cnki.32-1397n.2016.40.06.014
Abstract:
The performance of eight typical numerical integration methods of flexible multi-body systems dynamics is compared for reasonable selection.A hub-flexible beam system is studied,and a high order coupling model is built using Lagrange's equations of the second kind.The equations are solved using eight typical numerical integration methods,and the computational efficiency and computational accuracy are compared.Results show that compared with the implicit methods,the explicit methods depend on time step more; the computation efficiency of the implicit methods is lower than that of the explicit methods at same time step,the implicit methods can improve computation efficiency by amplifying the time step; the Gear method has an extremely high efficiency and is more suitable for the dynamic equations with generalized mass matrices as constant mass matrices; the Hilber-Hughes-Taylor(HHT)method and the generalized-α method can improve computation efficiency by amplifying the time step,but the computational accuracy is lower.

References:

[1] 《现代应用数学手册》编委会.现代应用数学手册:计算与数值分析卷[M].北京:清华大学出版社,2005.
[2]袁兆鼎,费景高,刘德贵.刚性微分方程初值问题的数值解法[M].北京:科学出版社,1987.
[3]冯伯培.解一般或刚性常微分方程初值问题的Gear方法[J].数值计算和计算机应用,1982,3(1):12-23.
Feng Baipei.The Gear program for solving initial value problems in general or stiff ordinary differential equations[J].Journal of Numerical Methods and Computer Applications,1982,3(1):12-23.
[4]刘运华.刚性方程二阶Gear方法的注记[J].北京航天航空大学学报,1990(3):83-92.
Liu Yunhua.A note on the second order Gear's method for stiff differential equation[J].Journal of Beijing University of Aeronautics and Astronautics,1990(3):83-92.
[5]徐士良.常用算法程序集[M].北京:清华大学出版社,2004.
[6]Gear C W.Numerical initial value problems in ordinary differential equation[M].Englewood Cliffs,NJ,USA:Prentice-Hall Inc,1971.
[7]潘振宽,孙红旗,臧宏文,等.柔性多体系统动力学Stiff微分方程数值积分方法[J].青岛大学学报,1996,11(3):36-39.
Pan Zhenkuan,Sun Hongqi,Zang Hongwen,et al.Numerical methods for stiff differential equations of flexible multibody system dynamics[J].Journal of Qingdao University,1996,11(3):36-39.
[8]王琪,黄克累,陆启韶.树形多体系统动力学的隐式数值算法[J].力学学报,1996,28(6):717-725.
Wang Qi,Huang Kelei,Lu Qishao.Implicit numerical algorithm for multibody dynamics with open loop systems[J].Chinese Journal of Theoretical and Applied Mechanics,1996,28(6):717-725.
[9]刘树青,王兴松.基于零空间法的柔性多体系统动力学计算及仿真[J].东南大学学报,2010,40(6):1348-1352.
Liu Shuqing,Wang Xingsong.Dynamics calculation and simulation of flexible multi-body system based on null-space method[J].Journal of Southeast University,2010,40(6):1348-1352.
[10]丁洁玉,潘振宽.非完整约束多体系统时间离散变分积分法[J].动力学与控制学报,2011,9(4):289-292.
Ding Jieyu,Pan Zhenkuan.Time-discrete variational integrator for multibody dynamic systems with nonholonomic constraints[J].Journal of Dynamics and Control,2011,9(4):289-292.
[11]吴锋,高强,钟万勰.刚-柔体动力学方程的保辛摄动迭代法[J].应用数学和力学,2014,35(4):341-352.
Wu Feng,Gao Qiang,Zhong Wanxie.Iterative symplectic perturbation method for the dynamic analysis of rigid-flexible bodies equations[J].Applied Mathematics and Mechanics,2014,35(4):341-352.
[12]谭述君,高强,钟万勰.Duhamel项的精细积分方法在非线性微分方程数值求解中的应用[J].计算力学学报,2010,27(5):752-758.
Tan Shujun,Gao Qiang,Zhong Wanxie.Applications of Duhamel term's precise integration method in solving nonlinear differential equations[J].Chinses Journal of Computational Mechanics,2010,27(5):752-758.
[13]潘科琪,刘锦阳.热冲击下的复合材料壳刚柔耦合动力学研究[J].振动与冲击,2013,32(16):1-6.
Pan Keqi,Liu Jinyang.Rigid-flexible coupling dynamics of composite shell considering thermal shock[J].Journal of Vibration and Shock,2013,32(16):1-6.
[14]陈思佳,章定国,洪嘉振.大变形旋转柔性梁的一种高次刚柔耦合动力学模型[J].力学学报,2013,45(2):251-256.
Chen Sijia,Zhang Dingguo,Hong Jiazhen.A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation[J].Chinese Journal of Theoretical and Applied Mechanics.2013,45(2):251-256.
[15]钱震杰,章定国,刘俊,等.柔性杆柔性铰机器人碰撞动力学建模与仿真[J].南京理工大学学报,2013,37(3):415-421.
Qian Zhenjie,Zhang Dingguo,Liu Jun,et al.Impact dynamic modeling and simulation of robots with flexible links and flexible joints[J].Journal of Nanjing University of Science and Technology,2013,37(3):415-421.
[16]Li Liang,Zhang Dingguo,Zhu Weidong.Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect[J].Journal of Sound and Vibration,2014,333(5):1526-1541.
[17]Newmark N M.A method of computation for structural dynamics[J].Journal of the Engineering Mechanics Division,1959,85(3):67-94.
[18]Hilber H,Hughes T,Taylor R.Improved numerical dissipation for time integration algorithms in structural dynamics[J].Earthquake Engineering & Structural Dynamics,1977,5(2):283-292.
[19]Negrut D,Rampalli R,Ottarsson G,et al.On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics[J].Journal of Computational and Nonlinear Dynamics,2007,2(1):73-85.
[20]Brüls O,Golinval J C.The generalized-α method in mechatronic applications[J].Zeitschrift für Angewandte Mathematik und Mechanik(ZAMM),2006,86(10):748-758.
[21]Jay L O,Negrut D.A second order extension of the generalized-α method for constrained systems in mechanics[J].Multibody Dynamics,2007:143-158.
[22]Chung J,Hulbert G M.A time integration algorithm for structural dynamics with improved numerical dissipation:The generalized-α method[J].Journal of Applied Mechanics,1993,60(2):371-375.
[23]于开平,邹经湘.结构动力响应数值算法耗散和超调特性设计[J].力学学报,2005,37(4):467-476.
Yu Kaiping,Zou Jingxiang.Two time integral algorithms with numerical dissipation and without overshoot for structural dynamic[J].Chinese Journal of Theoretical and Applied Mechanics,2005,37(4):467-476.
[24]Arnold M,Brüls O.Convergence of the generalized-α scheme for constrained mechanical systems[J].Multibody System Dynamics,2007,18(2):185-202
[25]Erlicher S,Bonaventura L,Brüls O.The analysis of the generalized-α method for nonlinear dynamic problems[J].Computational Mechanics,2002,28(2):83-104.
[26]Géradin M,cardona A.Flexible multibody dynamics:A finite element approach[M].New York,USA:Wiley,2001.
[27]Gobat J I,Grosenbaugh M A,Triantafyllou M S.Generalized-α time integration solutions for hanging chain dynamics[J].Journal of Engineering Mechanics,2002,128(6):677-687.
[28]吴胜宝,章定国.大范围运动刚体-柔性梁刚柔耦合动力学分析[J].振动工程学报,2011,24(1):1-7.
Wu Shengbao,Zhang Dingguo.Rigid-flexible coupling dynamic analysis of hub-flexible beam with large over all motion[J].Journal of Vibration Engineering,2011,24(1):1-7.
[29]刘锦阳,洪嘉振.柔性体的刚-柔耦合动力学分析[J].固体力学学报,2002,23(2):159-166.
Liu Jinyang,Hong Jiazhen.Rigid-flexible coupling dynamic analysis of flexible body[J].Acta Mechanica Solida Sinica,2002,23(2):159-166.

Memo

Memo:
-
Last Update: 2016-12-30