|Table of Contents|

Development and construction of knowledge graph(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年01期
Page:
22-
Research Field:
Publishing date:

Info

Title:
Development and construction of knowledge graph
Author(s):
Li Tao12Wang Cichen12Li Huakang12
1.School of Computer Science; 2.Jiangsu Province Key Lab of Big Data Security and IntelligentProcessing,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
Keywords:
knowledge graph construction methods entity knowledge mining extended application
PACS:
TP39
DOI:
10.14177/j.cnki.32-1397n.2017.41.01.004
Abstract:
Knowledge graph,as an intelligent and efficient way for knowledge organization,enables users to quickly and accurately query the information they need.In this paper,we provide a comprehensive survey on the development and construction of knowledge graph by reviewing and summarizing recent advances in the research and practice of knowledge graph systems in the relevant literature.In particular,our introduction includes the concept origin,development,and eventual formation of the knowledge graph,various data sources for the knowledge graph,the ontology construction and the entity extraction,and the process of knowledge mining,updating,and maintenance.Finally,we discuss the technical challenges,development trends,and future research directions of knowledge graph.In summary,the theory and the associated techniques of knowledge graph is of great research significance.However,there are still many technical challenges,which need further investigation,in building and using the knowledge graph.

References:

[1] Djds B P.Networks of scientific papers[J].Science,2010,149(3683):510-515.
[2]袁国铭,李洪奇,樊波.关于知识工程的发展综述[J].计算技术与自动化,2011,34(1):138-143.
Yuan Guoming,Li Hongqi,Fan Bo.Survey on development of knowledge engineering system[J].Computing Technology and Automation,2011,34(1):138-143.
[3]陈和.机构知识库发展趋势探析[J].图书情报工作,2012,21:62-66.
Chen He.Development trends of the institutional repository[J].Library and Information Service,2012,21:62-66.
[4]张晓林.机构知识库的发展趋势与挑战[J].现代图书情报技术,2014,30(2):1-7.
Zhang Xiaolin.Trends and challenges for institutional repositories[J].New Technology of Library and Information Service,2014,30(2):1-7.
[5]曹倩,赵一鸣.知识图谱的技术实现流程及相关应用[J].情报理论与实践,2015,38(12):13-18.
Cao qian,Zhao Yiming.Technology implementation process and the related application of knowledge graph[J].Information Studies:Theory & Application,2015,38(12):13-18.
[6]胡芳槐.基于多种数据源的中文知识图谱构建方法研究[D].上海:华东理工大学计算机学院,2014.
[7]Wu W,Li H,Wang H,et al.Probase:a probabilistic taxonomy for text understanding[C]//Proc of the 2012 ACM SIGMOD Int Conf on Management of Data.New York:ACM,2012:481-492.
[8]祝忠明,马建霞,卢利农,等.机构知识库开源软件DSpace的扩展开发与应用[J].现代图书情报技术,2009(7-8):11-17.
Zhu Zhongming,Ma Jianxia,Lu Linong,et al.Expansion development and application of DSpace:the institutional knowledge base open source software[J].New Technology of Library and Information Service,2009(7-8):11-17.
[9]Garfield E.Citation indexes for science:a new dimension in documentation through association of ideas[J].International Journal of Epidemiology,2006,122(5):1123-1127.
[10]秦长江,侯汉清.知识图谱——信息管理与知识管理的新领域[J].大学图书馆学报,2009(1):30-37.
Qin Changjiang,Hou Hanqing.Knowledge Graph—the new field of information and knowledge management[J].Journal of Academic Libraries,2009(1):30-37.
[11]杨思洛,韩瑞珍.知识图谱研究现状及趋势的可视化分析[J].情报资料工作,2012,33(4):22-28.
Yang Siluo,Han Ruizhen.A visual analysis of the status quo and trend of knowledge mapping research[J].Information and Documentation Services,2012,33(4):22-28.
[12]鄢珞青.知识库的知识表达方式探讨[J].情报杂志,2003(4):63-64.
Yan Luoqing.Methods of knowledge expression in knowledge base[J].Journal of Information,2003(4):63-64.
[13]王知津,王璇,马婧.论知识组织的十大原则[J].国家图书馆学刊,2012,21(4):3-11.
Wang Zhijin,Wang Xuan,Ma Jing.The ten principles of know ledge organization[J].Journal of The National Library of China,2012,21(4):3-11.
[14]王军,张丽.网络知识组织系统的研究现状和发展趋势[J].中国图书馆学报,2008,34(1):65-69.
Wang Jun,Zhang Li.Research status and development trend of network knowledge organization system[J].Journal of Library Science in China,2008,34(1):65-69.
[15]刘知远,孙茂松,林衍凯,等.知识表示学习研究进展[J].计算机研究与发展,2016,53(2):247-261.
Liu Zhiyuan,Sun Maoshong,Lin Yankai,et al.Knowledge representation learning:a Review[J].Journal of Computer Research and Development,2016,53(2):247-261.
[16]Hodge G.Next generation knowledge organization systems:Integration challenges and strategies[C]//ACM/IEEE-CS Joint Conference on Digital Libraries.New York:ACM,2005.
[17]袁旭萍.基于深度学习的商业领域知识图谱构建[D].上海:华东师范大学商学院,2015.
[18]Wikipedia.Never-Ending Language Learning[EB/OL].http://en.wikipedia.org/wiki/Never-Ending_Language_Learning,2015.
[19]王昊奋.知识图谱技术原理介绍[EB/OL].http://wenku.baidu.coni/view/b3858227c5d a50e2534 d7fd8.html,2015.
[20]项灵辉.基于图数据库的海量RDF数据分布式存储[D].武汉:武汉科技大学计算机学院,2013.
[21]曾锦麒.语义WEB的知识表示语言及其应用研究[D].长沙:中南大学管理学院,2004.
[22]Li Lei,Li Tao.An empirical study of ontology-based multi-document summarization in disaster management[J].IEEE Transactions SMC:Systems,2014,44(2):162-171.
[23]李涛.数据挖掘的应用与实践[M].厦门:厦门大学出版社,2013.
[24]Jiang Yexi,Chang-Shing Perng,Anca Sailer,et al.CSM:a cloud service marketplace for complex service acquisition[J].ACM Transactions on Intelligent Systems and Technology,2016,8(1):1-25.
[25]梁铭.基于英汉平行语料库术语词典的自动抽取[J].电脑知识与技术,2009,5(19):5081-5083.
Liang Ming.English-Chinese parallel corpora based on the automatic extraction of terms dictionary[J].Computer Knowledge and Technology,2009,5(19):5081-5083.
[26]曹浩.基于机器学习的双语词汇抽取问题研究[D].天津:南开大学研究生学院,2011.
[27]孙霞,董乐红.基于监督学习的同义关系自动抽取方法[J].西北大学学报,2008,38(1):35-39.
Sun xia,Dong Yuehong.Automatic extraction of synonymy relation using supervised learning[J].Journal of Northwest University,2008,38(1):35-39.
[28]关键.面向中文文本本体学习概念抽取的研究[D].吉林:吉林大学,2010.
[29]寇月,申德荣,李冬,等.一种基于语义及统计分析的Deep Web实体识别机制[J].软件学报,2008,19(2):194-208.
Kou Yue,Shen Derong,Li Dong,et al.A deep web entity identification mechanism based on semantics and statistical analysis[J].Journal of Software,2008,19(2):194-208.
[30]庄严,李国良,冯建华.知识库实体对齐技术综述[J].计算机研究与发展,2016,53(1):165-192.
Zhuang Yan,Li Guoliang,Feng JianHua.A survey on entity a lignment of knowledge base[J].Journal of Computer Research and Development.2016,53(1):165-192.
[31]Zhang Xiangling,Du Cuilan,Li Peishan,et al.Knowledge graph completion via local semantic contexts[J].Database Systems for Advanced Applications,2011,9642:432-446.
[32]王元卓,贾岩涛,刘大伟,等.基于开放网络知识的信息检索与数据挖掘[J].计算机研究与发展,2015,52(2):456-474.
Wang Yuanzhuo,Jia Yantao,Liu Dawei,et al.Open web knowledge aided information search and data mining[J].Journal of Computer Research and Development,2015,52(2):456-474.
[33]Kumar D,Ramakrishnan N,Helm R,et al.Algorithms for story telling[J].IEEE Trans on Knowledge and Data Engineering,2008,20(6):736-751.
[34]Hossain M,Butler P,Boedihardjo A,et al.Story telling in entity networks to support intelligence analysts[C]//Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining.New York:ACM,2012:1375-1383.
[35]Fang L,Sarma A D,Yu C,et al.REX:Explaining relationships between entity pairs[J].VLDB Endowment,2011,5(3):241-252.
[36]Quinlan J R,Cameron-Jones R M.FOIL:A midterm report[C]//Proc of the 5th European Conf on Machine Learning.Berlin:Springer,1993:3-20.
[37]Mitchell T M,Betteridge J,Carlson A,et al.Populating these mantic Web by macro-reading internet text[C]//Proc of the 8th Int Semantic Web Conf.Berlin:Springer,2009:998-1002.
[38]Cohen W W,Page D.Polynomial learnability and inductive logic programming:Methods and results[J].New Generation Computing,1995,13(34):369-409.
[39]Mitchell T M,Betteridge J,Carlson A,et al.Populating these mantic Web by macro-reading internet text[C]//Proc of the 8th Int Semantic Web Conf.Berlin:Springer,2009:998-1002.
[40]Suchanek F,Kasneci G,Weikum G.YAGO—A core of semantic knowledge[C]//Proc of the 16th Int Conf on World Wide Web.New York:ACM,2007:697-706.
[41]Lao N,Mitchell T M,Cohen W W.Random walk inference and learning in a large scale knowledge base[C]//Proc of the Conf on Empirical Methods in Natural Language Processing,EMNLP’11.Stroudsburg,PA:Association for Computational Linguistics,2011:529-539.
[42]Schoenmackers S,Etzioni O,Weld D,et al.Learning first-order Horn clauses from Web text[C]//Proc of the 2010 Conf on Empirical Methods in Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2010:1088-1098.
[43]Schoenmackers S,Etzioni O,Weld D.Scaling textual inference to the Web[C]//Proc of the Conf on Empirical Methods in Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2008:79-88.
[44]Schoenmackers S,Etzioni O,Weld D,et al.Learning first-order horn clauses from Web text[C]//Proc of the 2010 Conf on Empirical Methods in Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2010:1088-1098.
[45]Jia Yantao,Wang Yuanzhuo,Li Jingyuan,et al.Structural-interaction link prediction in microblogs[C]//Proc of the 22nd Int Conf on World Wide Web Companion.New York:ACM,2013:193-194.
[46]Li X,Wang Y Y,Shen D,et al.Learning with click graph for query intent classification[J].ACM Transactions on Information Systems,2010,28(3):1-20.
[47]Guo Jiafeng.Intent-aware query similarity[C]//Proc of the17th ACM Conf on Information and Knowledge Management(CIKM’11).New York:ACM,2011:259-268.
[48]Chilton L B,Teevan J.Addressing people’s information needs directly in a web search result page[C]//Proceedings of the 20th International Conference on World Wide Web.New York:ACM,2011:27-36.
[49]He Y,Wang K.Inferring search behaviors using partially observable Markov model with duration[C]//Proceedings of the Fourth ACM International Conference on Web Search and Data Mining-WSDM’11.New York:ACM,2011:415-424.
[50]Wen Hua,Song Yangqiu,Wang Haixun,et al.Identifying users’topical tasks in Web search[C]//Proc of the 4th ACM Int Conf on Web Search and Data Mining,WSDM’13.NewYork:ACM,2013:93-102.
[51]Tran T,Cao T H.Automatic detection of outdated information in Wikipedia infoboxes[J].Research in Computing Science,2013,70:183-194.
[52]Jia Y,Wang Y,Cheng X,et al.OpenKN:An open knowledge computational engine for network big data[C]//Advances in Social Networks Analysis and Mining,2014 IEEE/ACM International Conference on.Washington DC:IEEE,2014:657-664.
[53]Hoffart J,Suchanek F M,Berberich K,et al.YAGO2:A spatially and temporally enhanced knowledge base from Wikipedia[J].Artificial Intelligence,2013,194:28-61.
[54]方滨兴,贾焰,李爱平,等.网络空间大搜索研究范畴与发展趋势[J].通信学报,2015,36(12):1-8.
Fang Binxing,Jia Yan,Li Aiping,et al.Research progress and trend of cyberspace big search[J].Journal on Communications,2015,36(12):1-8.

Memo

Memo:
-
Last Update: 2017-02-28