|Table of Contents|

Development and construction of knowledge graph(PDF)


Research Field:
Publishing date:


Development and construction of knowledge graph
Li Tao12Wang Cichen12Li Huakang12
1.School of Computer Science; 2.Jiangsu Province Key Lab of Big Data Security and IntelligentProcessing,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
knowledge graph construction methods entity knowledge mining extended application
Knowledge graph,as an intelligent and efficient way for knowledge organization,enables users to quickly and accurately query the information they need.In this paper,we provide a comprehensive survey on the development and construction of knowledge graph by reviewing and summarizing recent advances in the research and practice of knowledge graph systems in the relevant literature.In particular,our introduction includes the concept origin,development,and eventual formation of the knowledge graph,various data sources for the knowledge graph,the ontology construction and the entity extraction,and the process of knowledge mining,updating,and maintenance.Finally,we discuss the technical challenges,development trends,and future research directions of knowledge graph.In summary,the theory and the associated techniques of knowledge graph is of great research significance.However,there are still many technical challenges,which need further investigation,in building and using the knowledge graph.


[1] Djds B P.Networks of scientific papers[J].Science,2010,149(3683):510-515.
Yuan Guoming,Li Hongqi,Fan Bo.Survey on development of knowledge engineering system[J].Computing Technology and Automation,2011,34(1):138-143.
Chen He.Development trends of the institutional repository[J].Library and Information Service,2012,21:62-66.
Zhang Xiaolin.Trends and challenges for institutional repositories[J].New Technology of Library and Information Service,2014,30(2):1-7.
Cao qian,Zhao Yiming.Technology implementation process and the related application of knowledge graph[J].Information Studies:Theory & Application,2015,38(12):13-18.
[7]Wu W,Li H,Wang H,et al.Probase:a probabilistic taxonomy for text understanding[C]//Proc of the 2012 ACM SIGMOD Int Conf on Management of Data.New York:ACM,2012:481-492.
Zhu Zhongming,Ma Jianxia,Lu Linong,et al.Expansion development and application of DSpace:the institutional knowledge base open source software[J].New Technology of Library and Information Service,2009(7-8):11-17.
[9]Garfield E.Citation indexes for science:a new dimension in documentation through association of ideas[J].International Journal of Epidemiology,2006,122(5):1123-1127.
Qin Changjiang,Hou Hanqing.Knowledge Graph—the new field of information and knowledge management[J].Journal of Academic Libraries,2009(1):30-37.
Yang Siluo,Han Ruizhen.A visual analysis of the status quo and trend of knowledge mapping research[J].Information and Documentation Services,2012,33(4):22-28.
Yan Luoqing.Methods of knowledge expression in knowledge base[J].Journal of Information,2003(4):63-64.
Wang Zhijin,Wang Xuan,Ma Jing.The ten principles of know ledge organization[J].Journal of The National Library of China,2012,21(4):3-11.
Wang Jun,Zhang Li.Research status and development trend of network knowledge organization system[J].Journal of Library Science in China,2008,34(1):65-69.
Liu Zhiyuan,Sun Maoshong,Lin Yankai,et al.Knowledge representation learning:a Review[J].Journal of Computer Research and Development,2016,53(2):247-261.
[16]Hodge G.Next generation knowledge organization systems:Integration challenges and strategies[C]//ACM/IEEE-CS Joint Conference on Digital Libraries.New York:ACM,2005.
[18]Wikipedia.Never-Ending Language Learning[EB/OL].http://en.wikipedia.org/wiki/Never-Ending_Language_Learning,2015.
[19]王昊奋.知识图谱技术原理介绍[EB/OL].http://wenku.baidu.coni/view/b3858227c5d a50e2534 d7fd8.html,2015.
[22]Li Lei,Li Tao.An empirical study of ontology-based multi-document summarization in disaster management[J].IEEE Transactions SMC:Systems,2014,44(2):162-171.
[24]Jiang Yexi,Chang-Shing Perng,Anca Sailer,et al.CSM:a cloud service marketplace for complex service acquisition[J].ACM Transactions on Intelligent Systems and Technology,2016,8(1):1-25.
Liang Ming.English-Chinese parallel corpora based on the automatic extraction of terms dictionary[J].Computer Knowledge and Technology,2009,5(19):5081-5083.
Sun xia,Dong Yuehong.Automatic extraction of synonymy relation using supervised learning[J].Journal of Northwest University,2008,38(1):35-39.
[29]寇月,申德荣,李冬,等.一种基于语义及统计分析的Deep Web实体识别机制[J].软件学报,2008,19(2):194-208.
Kou Yue,Shen Derong,Li Dong,et al.A deep web entity identification mechanism based on semantics and statistical analysis[J].Journal of Software,2008,19(2):194-208.
Zhuang Yan,Li Guoliang,Feng JianHua.A survey on entity a lignment of knowledge base[J].Journal of Computer Research and Development.2016,53(1):165-192.
[31]Zhang Xiangling,Du Cuilan,Li Peishan,et al.Knowledge graph completion via local semantic contexts[J].Database Systems for Advanced Applications,2011,9642:432-446.
Wang Yuanzhuo,Jia Yantao,Liu Dawei,et al.Open web knowledge aided information search and data mining[J].Journal of Computer Research and Development,2015,52(2):456-474.
[33]Kumar D,Ramakrishnan N,Helm R,et al.Algorithms for story telling[J].IEEE Trans on Knowledge and Data Engineering,2008,20(6):736-751.
[34]Hossain M,Butler P,Boedihardjo A,et al.Story telling in entity networks to support intelligence analysts[C]//Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining.New York:ACM,2012:1375-1383.
[35]Fang L,Sarma A D,Yu C,et al.REX:Explaining relationships between entity pairs[J].VLDB Endowment,2011,5(3):241-252.
[36]Quinlan J R,Cameron-Jones R M.FOIL:A midterm report[C]//Proc of the 5th European Conf on Machine Learning.Berlin:Springer,1993:3-20.
[37]Mitchell T M,Betteridge J,Carlson A,et al.Populating these mantic Web by macro-reading internet text[C]//Proc of the 8th Int Semantic Web Conf.Berlin:Springer,2009:998-1002.
[38]Cohen W W,Page D.Polynomial learnability and inductive logic programming:Methods and results[J].New Generation Computing,1995,13(34):369-409.
[39]Mitchell T M,Betteridge J,Carlson A,et al.Populating these mantic Web by macro-reading internet text[C]//Proc of the 8th Int Semantic Web Conf.Berlin:Springer,2009:998-1002.
[40]Suchanek F,Kasneci G,Weikum G.YAGO—A core of semantic knowledge[C]//Proc of the 16th Int Conf on World Wide Web.New York:ACM,2007:697-706.
[41]Lao N,Mitchell T M,Cohen W W.Random walk inference and learning in a large scale knowledge base[C]//Proc of the Conf on Empirical Methods in Natural Language Processing,EMNLP’11.Stroudsburg,PA:Association for Computational Linguistics,2011:529-539.
[42]Schoenmackers S,Etzioni O,Weld D,et al.Learning first-order Horn clauses from Web text[C]//Proc of the 2010 Conf on Empirical Methods in Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2010:1088-1098.
[43]Schoenmackers S,Etzioni O,Weld D.Scaling textual inference to the Web[C]//Proc of the Conf on Empirical Methods in Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2008:79-88.
[44]Schoenmackers S,Etzioni O,Weld D,et al.Learning first-order horn clauses from Web text[C]//Proc of the 2010 Conf on Empirical Methods in Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2010:1088-1098.
[45]Jia Yantao,Wang Yuanzhuo,Li Jingyuan,et al.Structural-interaction link prediction in microblogs[C]//Proc of the 22nd Int Conf on World Wide Web Companion.New York:ACM,2013:193-194.
[46]Li X,Wang Y Y,Shen D,et al.Learning with click graph for query intent classification[J].ACM Transactions on Information Systems,2010,28(3):1-20.
[47]Guo Jiafeng.Intent-aware query similarity[C]//Proc of the17th ACM Conf on Information and Knowledge Management(CIKM’11).New York:ACM,2011:259-268.
[48]Chilton L B,Teevan J.Addressing people’s information needs directly in a web search result page[C]//Proceedings of the 20th International Conference on World Wide Web.New York:ACM,2011:27-36.
[49]He Y,Wang K.Inferring search behaviors using partially observable Markov model with duration[C]//Proceedings of the Fourth ACM International Conference on Web Search and Data Mining-WSDM’11.New York:ACM,2011:415-424.
[50]Wen Hua,Song Yangqiu,Wang Haixun,et al.Identifying users’topical tasks in Web search[C]//Proc of the 4th ACM Int Conf on Web Search and Data Mining,WSDM’13.NewYork:ACM,2013:93-102.
[51]Tran T,Cao T H.Automatic detection of outdated information in Wikipedia infoboxes[J].Research in Computing Science,2013,70:183-194.
[52]Jia Y,Wang Y,Cheng X,et al.OpenKN:An open knowledge computational engine for network big data[C]//Advances in Social Networks Analysis and Mining,2014 IEEE/ACM International Conference on.Washington DC:IEEE,2014:657-664.
[53]Hoffart J,Suchanek F M,Berberich K,et al.YAGO2:A spatially and temporally enhanced knowledge base from Wikipedia[J].Artificial Intelligence,2013,194:28-61.
Fang Binxing,Jia Yan,Li Aiping,et al.Research progress and trend of cyberspace big search[J].Journal on Communications,2015,36(12):1-8.


Last Update: 2017-02-28