|Table of Contents|

Movement target tracking algorithm by using Gaussian mixture model(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年01期
Page:
41-
Research Field:
Publishing date:

Info

Title:
Movement target tracking algorithm by using Gaussian mixture model
Author(s):
Du Juan1Wu Fenfen2
1.Information Engineering Department,Yellow River Conservancy Technical Institute,Kaifeng 475004,China; 2.Department of Traffic Information Engineering,Henan Vocational andTechnical College of Communication,Zhengzhou 451400,China
Keywords:
Gaussian mixture model target tracking wireless sensor node nodes collaboration mean shift algorithm simulation experiment
PACS:
TP391.4
DOI:
10.14177/j.cnki.32-1397n.2017.41.01.006
Abstract:
Video object tracking is a key technology in computer vision research,and current video target tracking algorithms has defects such as low tracking precision,poor real-time,a novel video object tracking algorithm based on Gaussian Mixture model is proposed in this paper.Firstly,wireless sensor network is used to collect target information,and secondly Gaussian Mixture model is used to model video background while mean shift algorithm is used to track the target,finally,video object tracking simulation experiment is carried out on VC 6.0++.The results show that the propose algorithm can improve accuracy of video target tracking and fasten tracking speed which has good robustness to occlusion and illumination change,it has better performance than other video target tracking algorithms and has higher practical value.

References:

[1] Xie Yuan,Qu Yanyun,Li Cuihua,et al.Online multiple instance gradient feature selection for robust visual tracking[J].Pattern Recognition Letters,2012,33(9):1075-1082.
[2]Leichter I,Lindenbaum M,Rivlin E.Mean shift tracking with multiple references color histograms[J].Computer Vision and Image Understanding,2010,114(3):400-408.
[3]Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
[4]Kalal Z,Mikolajczyk K,Matas J.Tracking-learning-detection[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2012,34(7):1409-1422.
[5]徐天阳,吴小俊.基于多特征级联的目标跟踪算法研究[J].南京理工大学学报,2015,39(3):286-290.
Xu Tianyang,Wu Xiaojun.Object tracking algorithm based on multiple features cascade[J].Journal of Nanjing University of Science and Technology,2015,39(3):286-290.
[6]戴洪德,邹杰,徐胜红,等.含预测和容错的自适应Kalman目标跟踪[J].南京理工大学学报,2015,39(1):108-114.
Dai Hongde,Zou Jie,Xu Shenghong,et al.Adaptive Kalman filter combined with prediction and fault tolerance for target tracking[J].Journal of Nanjing University of Science and Technology,2015,39(1):108-114.
[7]宋晓林,王文涛,张伟伟.基于LBP纹理和改进Camshift算子的车辆检测与跟踪[J].湖南大学学报(自然科学版),2013,40(8):52-57.
Song Xiaolin,Wang Wentao,Zhang Weiwei.Vehicle detection and tracking based on the Local Binary Pattern texture and improved Camshift operator[J].Journal of Hunan University(Natural Sciences),2013,40(8):52-57.
[8]王保云,范保杰.基于颇色纹理联合直方图的自适应Meanshift跟踪算法[J].南京邮电大学学报(自然科学版),2013,33(3):18-25.
Wang Baoyun,Fang Baojie.Adoptive meanshift tracking algorithm based on the combined feature histogram of color and texture[J].Journal of Nanjing University of Posts and Telecommunications(Natural Sciences),2013,33(3):18-25.
[9]Liang Liu,Xi Zhang.Optimal node selection for target localization in wireless camera senor networks[J].IEEE Transactions on Vehicular Technology,2010,59(7):120-127.
[10]刘明,赵孝磊.一种改进的Camshift目标跟踪算法[J].南京理工大学学报,2013,37(5):755-759.
Liu Ming,Zhao Xiaolei.Target tracking based on improved Camshift algorithm[J].Journal of Nanjing University of Science and Technology,2013,37(5):755-759.
[11]席涛,张胜修,原魁,等.基于遗传进化策略的粒子滤波运动目标跟踪[J].光电工程,2009,36(3):28-31.
Xi Tao,Zhang Shengxiu,Yuan Kui,et al.Video object tracking based on particle filter with genetic evolution strategy[J].Opto-Electronic Engineering,2009,36(3):28-31.
[12]王玲玲,裴东,王全州.一种改进的 Camshift 运动目标跟踪算法[J].激光与红外,2015,45(10):1266-1271.
Wang Linlin,Pei Dong,Wang Quanzhou.Video target tracking algorithm based on improved Camshift[J].Laser & Infrared,2015,45(10):1266-1271.
[13]刘晴,唐林波,赵保军.跟踪窗自适应的Mean Shift标跟踪算法[J].系统工程与电子技术,2012,34(2):409-412.
Liu Qing,Tang Linbo,Zhao Baojun.Algorithm of target tracking based on Mean Shift with adaptive tracking window[J].Journal of Systems Engineering and Electronics,2012,34(2):409-412.

Memo

Memo:
-
Last Update: 2017-02-28