|Table of Contents|

Efficient compression propagating and querying method forsensor data lineage(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年01期
Page:
47-
Research Field:
Publishing date:

Info

Title:
Efficient compression propagating and querying method forsensor data lineage
Author(s):
Wu Zhuanhua1Pan Li23Wang Yongli3
1.Department of Electromechanical Engineering,Changzhou Textile Garment Institute,Changzhou 213164,China; 2.Staff of PLA Rocket Force,Beijing 100085,China; 3.School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
sensor data lineage compressed sensing column storage temporal and spatial correlation approximate query
PACS:
TP311
DOI:
10.14177/j.cnki.32-1397n.2017.41.01.007
Abstract:
In order to analyze the reason that generates the abnormal data in sensor network applications effectively and to construct the tracing chain,we propose a transmission and storage method based on compressed sensing and column stored theory for the sensor data lineage,called CPSQSDL(Compressed propagating,storing and querying of sensor data lineage),in this paper.We analyze the temporal and spatial correlation among the sensor data lineages of events,and find a suitable randomized projection observation matrix to ensure that k-term optimal reconstruction error.We describe the formal definition of compressed sensor lineage and design an algorithm for querying approximate lineage and formal proof of its error boundary.Experiments on the real data set prove the effectiveness of the proposed method.

References:

[1] Reddy S,Chen Gong,Fulkerson B,et al.Sensor-internet share and search-enabling collaboration of citizen scientists[C]//Proceedings of the ACM Workshop on Data Sharing and Interoperability on the World-wide Sensor Web.Cambridge,Mass.,USA:ACM Press,2007:11-16.
[2]Dogan S G.ProTru:a provenance-based trust architecture for wireless sensor networks[J].International Journal of Network Management,2016,26(2):131-151.
[3]Wang J,Crawl D,Purawat S,et al.Big data provenance:Challenges,state of the art and opportunities[C]// IEEE International Conference on Big Data.Santa Clara,CA,USA:IEEE Press,2015:2509-2516.
[4]Dogan G.A survey of provenance in wireless sensor networks[J].Adhoc & Sensor Wireless Networks,2016,30(1/2):21-35.
[5]Gammack D,Scott S,Chapman A P.Modelling provenance collection points and their impact on provenance graphs[C]//Provenance and Annotation of Data and Processes.New York,USA:Springer International Publishing,2016.
[6]Christopher Ré,Dan Suciu.Approximate lineage for probabilistic databases[C]//Proceeding of the 31th International Conferance on Very Large Data Base(VLDB’08).Auckland,New Zealand:VLDB Press,2008:797-808.
[7]Kanagal B,Deshpande A.Lineage processing over correlated probabilistic databases[C]//SIGMOD’10.Indianapolis,Indiana,USA:ACM Press,2010:675-686.
[8]Razzaque M A,Dobson S.Energy-efficient sensing in wireless sensor networks using compressed sensing[J].Sensors,2014,14(2):2822-2859.
[9]Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[10]Park U,Heidemann J.Provenance in sensor net republishing[C]//Proceeding of the 2nd International Provenance and Annotation Workshop.Salt Lake City,UT,USA:Springer Press,2008:280-292.
[11]Blount M,Davis J,Misra A,et al.A time-and-value centric provenance model and architecture for medical event streams[C]//Proceedings of the 1st International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments.San Juan,Puerto Rico,USA:Acm Sigmobile Society,2007:95-100.
[12]Misra A,Blount M,Kementsietsidis A,et al.Advances and challenges for scalable provenance in stream processing system[C]//Proceeding of the 2nd International Provenance and Annotation Workshop.Salt Lake City,UT,USA,2008:253-265.
[13]Halaschek-Wiener C,Golbeck J,Schain A,et al.Annotation and provenance tracking in semantic web photo libraries[C]//Proceedings of the 1st International Provenance and Annotation Workshop.Chicago,Illinois,USA:Springer Press,2006:82-89.
[14]Benjelloun A,Das Sarma A,Halevy J,et al.ULDBs:Databases with uncertainty and lineage[C]//Proceedings of the 32nd International Conference on Very Large Data Bases.Seoul,Korea:VLDB Press,2006:953-964.
[15]OPM:twiki,Open Provenance Model Wiki[EB/OL].URL http://twiki.ipaw.info/bin/view/OPM/,2009.
[16]Candes E,Tao T.Near optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
[17]Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[18]Achlioptas D.Database-friendly random projections:Johnson-Lindenstrauss with binary coins[J].Journal of Computer and System Sciences,2003:66(4):671-687.
[19]Tropp J A,Gilbert A C.Signal recovery from partial information by orthogonal matching pursuit[EB/OL].April 2005,www.personal.umich.edu/-jtropp/papers/ TG05-Signal-Recovery.pdf.
[20]The Gene Ontology Consortium.Gene ontology:tool for the unification of biology[J].Nature Genet,2000,25(1):25-29.

Memo

Memo:
-
Last Update: 2017-02-28