|Table of Contents|

Soft sensor modeling for penicillin fermentation process based onadaptive weighted least squares support vector machine(PDF)


Research Field:
Publishing date:


Soft sensor modeling for penicillin fermentation process based onadaptive weighted least squares support vector machine
Zhao ChaoLi JunDai KunchengWang Guiping
School of Chemical Engineering,Fuzhou University,Fuzhou 350108,China
weighted least squares support vector machines penicillin fermentation process normal distribution function chaos differential evolution simulated annealing soft sensor model
The presence of outliers in sample data can corrupt the model’s performance,giving undesirable results.A novel adaptive weighted least squares support vector machine(AWLS-SVM)regression method is presented for modeling of penicillin fermentation process.In AWLS-SVM,least square support vector machine regression is employed for the sample data to develop model and obtain the sample datum fitting error.According to the fitting error,the adaptive sample weights are obtained via the proposed improved normal distribution weighted scheme.The hybrid chaos differential evolution simulated annealing(CDE-SA)algorithm is proposed to obtain the optimal parameters of the model.The simulation experiment results show that the outliers influencing on the models performance is eliminated in AWLS-SVM,and that the prediction performance is better than those of least squares support vector machine(LS-SVM)and weighted least squares support vector machine(WLS-SVM)method.The AWLS-SVM is applied to develop the soft sensor model for penicillin fermentation process,and the satisfactory result is obtained.


[1] Monroy I,Villez K,Graells M,et al.Fault diagnosis of a benchmark fermentation process:a comparative study of feature extraction and classification techniques[J].Bioprocess and Biosystems Engineering,2012,35(5):689-704.
[2]Sivapathasekaran C,Sen R.Performance evaluation of an ANN-GA aided experimental modeling and optimization procedure for enhanced synthesis of marine biosurfactant in a stirred tank reactor[J].Journal of Chemical Technology and Biotechnology,2013,88(5):794-799.
[3]Nasr N,Hafez H,Naggar M,et al.Application of artificial neural networks for modeling of biohydrogen production[J].International Journal of Hydrogen Energy,2013,38(8):3189-3195.
[4]于霜,刘国海,梅从立,等.生物发酵过程中VIP优化神经网络逆系统的软测量方法[J].南京理工大学学报,2015,34(4):447-451.Yu Shuang,Liu Guohai,Mei Congli,et al.VIP optimal neural network inverse system soft sensing method in bio-fermentation process[J].Journal of Nanjing University of Science and Technology,2015,34(4):447-451.
[5]Peng Jiansheng,Meng Fanmei,Ai Yuncan.Time-dependent fermentation control strategies for enhancing synthesis of marine bacteriocin 1701 using artificial neural network and genetic algorithm[J].Bioresource Technology,2013,138(6):345-352.
[6]Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1999.
[7]Cortes C,Vapnik V N.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
[8]Ouyang Haibin,Li Steven,Zhang Ping,et al.Model penicillin fermentation by least squares support vector machine with tuning based on amended harmony search[J].International Journal of Biomathematics,2015(3):175-204.
Wang Bo,Sun Yukun,Ji Xiaofu,et al.Soft-sensor modeling for lysine fermentation processes based on PSO-SVM inversion[J].CIESC Journal,2012,63(9):3000-3007.
[10]Liu Guohai,Zhou Dawei,Xu Haixia,et al.Model optimization of SVM for a fermentation soft sensor[J].Expert systems with Applications,2010,37(4):2708-2713.
Liu Guohai,Zhou Dawei,Xu Haixia,et al.Soft sensor modeling using SVM in fermentation process[J].Chinese Journal of Scientific Instrument,2009,30(6):1228-1232.
Gu Yanping,Zhao Wenjie,Wu Zhansong.Least squares support vector machine algorithm[J].J Tsinghua Univ(Sci & Tech),2010,50(7):1063-1066.
Liu Yi,Wang Haiqing.Modelling of the penicillin fermentation process via LS-SVM based on Pensim simulator[J].Chemical Reaction Engineering and Technology,2006,22(3):252-258.
Xiong Weili,Yao Le,Xu Baoguo.Chaos least squares support vector machine and its application on fermentation process modeling[J].CIESC Journal,2013,64(12):4585-4591.
[15]Suykens J A K,De Brabanter J,Lukas L,et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocom-puting,2002,48(1-4):85-105.
Xiong Weili,Wang Xiao,Chen Minfang,et al.Modeling for penicillin fermentation process based on weighted LS-SVM[J].CIESC Journal,2012,63(9):2913-2919.
[18]Blum,Christian.Swarm intelligence:Introduction and applications[M].London:Springer,2010.
[19]Birol G,Undey C,Cinar A.A modular simulation package for fed-batch fermentation:penicillin production[J].Computers and Chemical Engineering,2002,26(11):1553-1565.
[20]Undey C,Tatara E,Cinar A.Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations[J].Journal of Biotechnology,2004,108(1):61-77.


Last Update: 2017-02-28