|Table of Contents|

Perturbation to symmetry and adiabatic invariant for Lagrangiansystem on time scale(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年02期
Page:
181-
Research Field:
Publishing date:

Info

Title:
Perturbation to symmetry and adiabatic invariant for Lagrangiansystem on time scale
Author(s):
Song Chuanjing1Zhang Yi12
1.School of Science,Nanjing University of Science and Technology,Nanjing 210094,China; 2.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China
Keywords:
perturbation to symmetry adiabatic invariants Lagrangian system time scales
PACS:
O316
DOI:
10.14177/j.cnki.32-1397n.2017.41.02.007
Abstract:
In order to reveal the internal relationships between the symmetry change and the invariant under the small disturbance,the perturbation to the Noether symmetry and adiabatic invariants for Lagrangian systems on time scales are studied in this paper.The differential equations of motion,the Noether symmetry and exact invariant for Lagrangian systems on time scales are presented.The definition of the adiabatic invariant on time scales is given,and the perturbation to the Noether symmetry and adiabatic invariants for Lagrangian systems on time scales are investigated.Finally,an example is given to illustrate the method and results.

References:

[1] Hilger S.Ein Ma?kettenkalkiil mit Anwendung auf Zentrumsmannigfaltigkeiten[D].Würzburg,Deutschland:Universit?t Würzburg,1988.
[2]Bohner M.Calculus of variations on time scales[J].Dynamic Systems & Applications,2004,13(12):339-349.
[3]Bartosiewicz Z,Torres D F M.Noether’s theorem on time scales[J].Journal of Mathematical Analysis and Applications,2008,342(2):1220-1226.
[4]Bartosiewicz Z,Martins N,Torres D F M.The second Euler-Lagrange equation of variational calculus on time scales[J].European Journal of Control,2011,17(1):9-18.
[5]Malinowska A B,Ammi M R S.Noether’s theorem for control problems on time times[J].International Journal of Difference Equations,2014,9(1):87-100.
[6]Malinowska A B,Martins N.The second Noether theorem on time scales[J].Abstract and Applied Analysis,2013,2013(1-2):675127.
[7]Martins N,Torres D F M.Noether’s symmetry theorem for nabla problems of the calculus of variations[J].Applied Mathematics Letters,2010,23(12):1432-1438.
[8]Cai Pingping,Fu Jingli,Guo Yongxin.Noether symmetries of the nonconservative and nonholonomic systems on time scales[J].Science China:Physics,Mechanics & Astronomy,2013,56(5):1017-1028.
[9]Peng Keke,Luo Yiping.Dynamics symmetries of Hamiltonian system on time scales[J].Journal of Mathematical Physics,2014,55(4):042702.
[10]Song Chuanjing,Zhang Yi.Noether theorem for Birkhoffian systems on time scales[J].Journal of Mathematical Physics,2015,56(10):102701.
[11]张毅.时间尺度上Hamilton系统的Noether理论[J].力学季刊,2016,37(2):214-224.
Zhang Yi.Noether theory for Hamiltonian system on time scales[J].Chinese Quarterly of Mechanics,2016,37(2):214-224.
[12]Bohner M,Peterson A.Dynamic equations on time scales-an introduction with applications[M].Boston,US:Birkh?user,2001.
[13]赵跃宇,梅凤翔.力学系统的对称性与不变量[M].北京:科学出版社,1999.

Memo

Memo:
-
Last Update: 2017-04-30