|Table of Contents|

Multi-sensor fault-tolerant fusion algorithm usingunscented information filter(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年03期
Page:
269-
Research Field:
Publishing date:

Info

Title:
Multi-sensor fault-tolerant fusion algorithm usingunscented information filter
Author(s):
Yang ChunGuo JianZhang LeiChen Qingwei
School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
unscented information filter multi-sensor fault tolerant data fusion fuzzy logic Chi-square test
PACS:
TP273
DOI:
10.14177/j.cnki.32-1397n.2017.41.03.001
Abstract:
A new multi-sensor fault-tolerant fusion algorithm is proposed for the poor accuracy of nonlinear data fusion systems and fault detection threshold selection problem.Unscented information filters are embedded into measurement subsystems,and the linearization error is avoided because the system need not be linearized.A fault detection algorithm based on fuzzy logic is designed.The subsystem validation probability is calculated using Chi-square test.Fault subsystems are isolated adaptively according to the validation probability of the subsystem,and the difficulty of selecting fault detection threshold is solved.The proposed algorithm is applied to a strap-down inertial navigation system/beidou2/global position system(SINS/BD2/GPS)integrated navigation system,and the simulation results show the availability.

References:

[1] 刘鸿飞,杨建栋,方丽英,等.加权数据融合算法在液化气监测中的应用[J].南京理工大学学报,2016,40(2):250-254.
Liu Hongfei,Yang Jiandong,Fang Liying,et al.Application of weighted data fusion in liquefied gas monitoring[J].Journal of Nanjing University of Science and Technology,2016,40(2):250-254.
[2]高德民,钱焕延,严筱永,等.无线传感器网络最大生命期数据融合算法[J].南京理工大学学报,2012,36(1):55-60.
Gao Demin,Qian Huanyan,Yan Xiaoyong,et al.Maximum lifetime data aggregation algorithm for wireless sensor networks[J].Journal of Nanjing University of Science and Technology,2012,36(1):55-60.
[3]Bevilacqua M,Tsourdos A,Starr A,et al.Data fusion strategy for precise vehicle location for intelligent self-aware maintenance systems[C]//6th International Conference on Intelligent Systems,Modelling and Simulation.New York,USA:IEEE,2015:76-81.
[4]Fan Qigao,Wu Yaheng,Hui Jing,et al.Integrated navigation fusion strategy of INS/UWB for indoor carrier attitude angle and position synchronous tracking[J].The Scientific World Journal,2014:215303.
[5]Gao Wei,Zhang Ya,Wang Jianguo.A strapdown interial navigation system/Beidou/Doppler velocity log integrated navigation algorithm based on a Cubature Kalman filter[J].Sensors(Basel),2014,14(1):1511-1527.
[6]Khoshelham K,Zlatanova S.Sensors for indoor mapping and navigation[J].Sensors(Basel),2016,16(5):655.
[7]Liu Jin,Fang Jiancheng,Yang Zhaohua,et al.X-ray pulsar/Doppler difference integrated navigation for deep space exploration with unstable solar spectrum[J].Aerospace Science & Technology,2015,41:144-150.
[8]Li Zengke,Wang Jian,Li Binghao,et al.GPS/INS/odometer integrated system using fuzzy neural network for land vehicle navigation applications[J].Journal of Navigation,2014,67(6):1-17.
[9]Lu Kelin,Zhou Rui.Multi-sensor fusion for robust target tracking in the simultaneous presence of set-membership and stochastic Gaussian uncertainties[J].IET Radar,Sonar & Navigation,2016,11(4):621-628.
[10]Wang Lijuan,Wu Lifeng,Guan Yong,et al.Online sensor fault detection based on an improved strong tracking filter[J].Sensors(Basel),2015,15(2):4578-4591.
[11]Yang Hongtao,Gao Huibin,Liu Xin.Strong tracking filtering algorithm of randomly delayed measurements for nonlinear systems[J].Mathematical Problems in Engineering,2015(5):1-14.
[12]Zheng Wei,Wang Jing,Wang Zengfu.Multi-sensor fusion based real-time hovering for a quadrotor without GPS in assigned position[C]//The 28th Chinese Control and Decision Conference(2016 CCDC).Yinchuan,China:IEEE,2016:3605-3610.
[13]Banos O,Damas M,Guillen A,et al.Multi-sensor fusion based on asymmetric decision weighting for robust activity recognition[J].Neural Processing Letters,2015,42(1):5-26.
[14]Khaleghi B,Khamis A,Karray F O,et al.Multisensor data fusion:A review of the state-of-the-art[J].Information Fusion,2013,14(1):28-44.
[15]Safari S,Shabani F,Simon D.Multirate multisensor data fusion for linear systems using Kalman filters and a neural network[J].Aerospace Science and Technology,2014,39(1):465-471.
[16]Sasaoka T,Kimoto I,Kishimoto Y,et al.Multi-robot SLAM via information fusion extended Kalman filters[J].IFAC-PapersOnLine,2016,49(22):303-308.
[17]Houtekamer P L,Zhang F.Review of the ensemble Kalman filter for atmospheric data assimilation[J].Monthly Weather Review,2016,144(12):4489-4532.
[18]Sepasi S,Ghorbani R,Liaw B Y.Improved extended Kalman filter for state of charge estimation of battery pack[J].Journal of Power Sources,2014,255(1):368-376.
[19]Xiong Binyu,Zhao Jiyun,Wei Zhongbao.Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model[J].Journal of Power Sources,2014,262(1):50-61.
[20]Chambers A,Scherer S,Yoder L,et al.Robust multi-sensor fusion for micro aerial vehicle navigation in GPS-degraded/denied environments[C]//American Control Conference.Portland,OR,USA:IEEE,2014:1892-1899.
[21]Wen Tao,Tang Xianfeng,Ge Quanbo.Multi-sensor fusion based on unscented strong tracking information filter[C]//The 26th Chinese Control and Decision Conference(2014 CCDC).Changsha,China:IEEE,2014:370-374.
[22]Vercauteren T,Wang X.Decentralized sigma-point information filters for target tracking in collaborative sensor networks[J].IEEE Transactions on Signal Processing,2005,53(8):2997-3009.
[23]Lee D J.Unscented information filtering for distributed estimation and multiple sensor fusion[C]//AIAA Guidance,Navigation and Control Conference and Exhibit.Honolulu,Hawaii,USA:IEEE,2008:1-15.
[24]Gu Yu,Gross J N,Rhudy M B,et al.A fault-tolerant multiple sensor fusion approach applied to UAV attitude estimation[J].International Journal of Aerospace Engineering,2016(3):1-12.
[25]Caron F,Duflos E,Pomorski D,et al.GPS/IMU data fusion using multisensor Kalman filtering:Introduction of contextual aspects[J].Information Fusion,2006,7(2):221-230.
[26]Lu Jingyang,Niu R.False information injection attack on dynamic state estimation in multi-sensor systems[C]//2014 17th International Conference on Information Fusion(FUSION).Salamanca,Spain:IEEE,2014:1-8.
[27]Lu Jingyang,Niu Ruixin.Sparse attacking strategies in multi-sensor dynamic systems maximizing state estimation errors[C]//2016 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Shanghai,China:IEEE,2016:3151-3155.
[28]Julier S J.The scaled unscented transformation[C]//Proceedings of the 2002 American Control Conference.Anchorage,Alaska,USA:IEEE,2002:4555-4559.
[29]赵琳.非线性系统滤波理论[M].北京:国防工业出版社,2012.
[30]Sibley G,Sukhatme G,Matthies L.The iterated sigma point Kalman filter with applications to long range stereo[C]//Proceedings of Robotics:Science and Systems.Philadelphia,USA:MIT Press,2006:1-6.
[31]Yang Chun,Mohammadi A,Chen Qingwei.Multi-sensor fusion with interaction multiple model and Chi-square test tolerant filter.[J].Sensors(Basel),2016,16(11):1835.

Memo

Memo:
-
Last Update: 2017-06-30