|Table of Contents|

Job shop scheduling algorithm for intelligent manufacturing(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年03期
Page:
322-
Research Field:
Publishing date:

Info

Title:
Job shop scheduling algorithm for intelligent manufacturing
Author(s):
Peng YiyanKong JianshouChen XuanWang Ru
School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
intelligent manufacturing job shop scheduling improved genetic algorithm matrix coding insert greedy decoding algorithm
PACS:
TP278
DOI:
10.14177/j.cnki.32-1397n.2017.41.03.008
Abstract:
An improved genetic algorithm of intelligent manufacturing for job shop scheduling optimization is proposed to promote the instant responding ability of companys for single piece,small batch,personalized customization.Processes and machines are coded by matrix coding under the constraint condition of multi-workpiece machining process.Selection,crossover and mutation operation corresponding to the coding method are designed,and a retention operator is added to reserve the optimal individual in each generation.Chromosomes are decoded by insert greedy decoding algorithm after the global optimal solution is obtained.The algorithm can optimize multi-workpiece operation planning and machine allocation schemes dynamically based on the shortest processing time or earliness/tardiness penalties minimal expense.Simulation results show the effectiveness.

References:

[1] Mehrabi M G,Ulsoy A G,Koren Y.Reconfigurable manufacturing systems:Key to future manufacturing[J].Journal of Intelligent Manufacturing,2000,11(4):403-419.
[2]唐秋华,陈立,王雪兰.基于改进遗传算法的车间布局重构[J].武汉科技大学学报,2011,37(3):161-166.
Tang Qiuhua,Chen Li,Wang Xuelan.Manufacturing workshop reconfiguration based on improved genetic algorithm[J].Journal of Wuhan University of Science and Technology,2011,37(3):161-166.
[3]赵涛,齐二石.生产方式的发展演变历程[J].工业工程,1998,1(3):22-27.
Zhao Tao,Qi Ershi.Developing history of production pattern[J].Industrial Engineering Journal,1998,1(3):22-27.
[4]朱耀祥,朱立强.设施规划与物流[M].北京:机械工业出版社,2004:102-106.
[5]Abbasi M,Houshmand M.Production planning and performance optimization of reconfigurable manufac-turing systems using genetic algorithm[J].The International Journal of Advanced Manufacturing Technology,2011,54(1):373-392.
[6]张超勇,董星,王晓娟,等.基于改进非支配排序遗传算法的多目标柔性作业车间调度[J].机械工程学报,2010,58(11):156-164.
Zhang Chaoyong,Dong Xing,Wang Xiaojuan,et al.Improved NSGA-Ⅱ for the multi-objective flexible job-shop scheduling problem[J].Journal of Mechanical Engineering,2010,58(11):156-164.
[7]谢皓,应保胜,袁波.基于遗传算法的路径柔性作业车间调度优化[J].武汉科技大学学报,2012,35(6):465-468.
Xie Hao,Ying Baosheng,Yuan Bo.Path flexible job shop scheduling based on genetic algorithm[J].Journal of Wuhan University of Science and Technology,2012,35(6):465-468.
[8]张屹,卢超,张虎,等.基于差分元胞多目标遗传算法的车间布局优化[J].计算机集成制造系统,2013,18(4):727-734.
Zhang Yi,Lu Chao,Zhang Hu,et al.Workshop layout optimization based on different cellular multi-objective genetic algorithm[J].Computer Integrated Manufacturing Systems,2013,18(4):727-734.
[9]黄君政,李爱平,雷明.基于NSGA-Ⅱ的多目标设备动态布局方法[J].中国工程机械学报,2014,12(1):1-6.
Huang Junzheng,Li Aiping,Lei Ming.NSGA-Ⅱ-enabled multi-objective dynamic facility layout method[J].Chinese Journal of Construction Machinery,2014,12(1):1-6.
[10]詹腾,张屹,朱大林,等.基于多策略差分进化的元胞多目标遗传算法[J].计算机集成制造系统,2014,19(6):1342-1351.
Zhan Teng,Zhang Yi,Zhu Dalin,et al.Cellular multi-objective genetic algorithm based on multi-strategy differential evolution[J].Computer Integrated Manufacturing Systems,2014,19(6):1342-1351.
[11]梁福军,宁汝新.可重构制造系统理论研究[J].机械工程学报,2003,39(6):36-43.
Liang Fujun,Ning Ruxin.The oretical research of reconfigurable manufacturing system[J].Chinese Journal of Mechanical Engineering,2003,39(6):36-43.
[12]Zhang Chaoyong,Rao Yunqing,Li Peigen.An effective hybrid genetic algorithm for the job shop scheduling problem[J].International Journal of Advanced Manufacturing Technology,2008,39(9-10):965-974.
[13]赵小强,何浩.一种求解柔性作业车间调度问题的改进DRSGA[J].南京理工大学学报,2016,40(3):297-298.
Zhao Xiaoqiang,He Hao.Improved DRSGA for flexible job shop scheduling[J].Journal of Nanjing University of Science and Technology,2016,40(3):297-298.
[14]张超勇,饶运清,李培根,等.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124.
Zhang Chaoyong,Rao Yunqing,Li Peigen,et al.Bilevel genetic algorithm for the flexible job-shop scheduling problem[J].Chinese Journal of Mechanical Engineering,2007,43(4):119-124.
[15]王柏琳,李铁克.等待时间受限的流水车间调度问题的若干性质[J].系统工程理论与实践,2012,32(6):1346-1352.
Wang Bailin,Li Tieke.Some properties of the flowshop scheduling problem with limited waiting time constraints[J].System Engineering Theory and Practice,2012,32(6):1346-1352.
[16]刘洋洋,王华昌,李建军.基于遗传蚁群算法的批量塑件混合流水生产调度研究[J].模具工业,2013,39(5):9-13.
Liu Yangyang,Wang Huachang,Li Jianjun.Scheduling of hybrid flow shop for batch of plastic parts based on ant colony and genetic algorithm[J].Die & Mould Industry,2013,39(5):9-13.
[17]杨宏安,孙启峰,李锦远.求解作业车间提前/拖期调度问题的一种新解码方法[J].计算机集成制造系统,2011,17(12):2652-2659.
Yang Hongan,Sun Qifeng,Li Jinyuan.Novel decoding method for job shop earliness and tardiness scheduling problem[J].Computer Integrated Manufacturing Systems,2011,17(12):2652-2659.
[18]李克婧,张小兵.改进型遗传算法在弹丸结构优化设计中的应用[J].南京理工大学学报,2009,33(3):339-343.
Li Kejing,Zhang Xiaobing.Application of improved genetic algorithm to optimization design of projectile structure[J].Journal of Nanjing University of Science and Technology,2009,33(3):339-343.
[19]战红,杨建军.基于工序矩阵编码遗传算法的车间作业调度优化[J].制造业自动化,2013,35(7):86-88.
Zhan Hong,Yang Jianjun.Optimization of the job shop scheduling problem based on operation matrix encoding genetic algorithm[J].Manufacturing Automation,2013,35(7):86-88.

Memo

Memo:
-
Last Update: 2017-06-30