|Table of Contents|

Delta-nabla integral equations for Birkhoff systems on time scales(PDF)


Research Field:
Publishing date:


Delta-nabla integral equations for Birkhoff systems on time scales
Song Chuanjing1Zhang Yi2
1.School of Sciences,Nanjing University of Science and Technology,Nanjing 210094,China; 2.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China
delta-nabla integral equations natural boundary conditions Birkhoff systems time scales
In order to study Birkhoff dynamics on time scales,the integral equations of motion with delta-nabla derivatives on time scales are presented.Those equations are studied under some boundary conditions and natural boundary conditions respectively.The integral equations of motion with delta or nabla derivatives on time scales are particular cases in this paper.Some other special cases of the results are discussed.An example is given to illustrate the application of the results.


[1] Hilger S.Ein Ma?kettenkalkiil mit Anwendung auf Zentrumsmannigfaltigkeiten[D].Würzburg,Deutschl-and:Universit?t Würzburg,1988.(in German)
[2]Atici F M,Guseinov G S.On Green’s functions and positive solutions for boundary value problems on time scales[J].Journal of Computational & Applied Mathematics,2002,141(1-2):75-99.
[3]Bohner M.Calculus of variations on time scales[J].Dynamic Systems & Applications,2004,13(12):339-349.
[4]Hilscher R,Zeidan V.Calculus of variations on time scales:Weak local piecewise C1rd solutions with variable endpoints[J].Journal of Mathematical Analysis and Applications,2004,289(1):143-166.
[5]Sarychev A,Shiryaev A,Guerra M,et al.Mathematical control theory and finance[M].Berlin,German:Springer,2008:149-159.
[6]Martins N,Torres D F M.Calculus of variations on time scales with nabla derivatives[J].Nonlinear Analysis:Theory,Methods & Applications,2009,71(12):e763-e773.
[7]Cai Pingping,Fu Jingli,Guo Yongxin.Noether symmetries of the nonconservative and nonholonomic systems on time scales[J].Science China:Physics,Mechanics & Astronomy,2013,56(5):1017-1028.
[8]Peng Keke,Luo Yiping.Dynamics symmetries of Hamiltonian system on time scales[J].Journal of Mathematical Physics,2014,55(4):042702.
[9]Malinowska A B,Ammi M R S.Noether’s theorem for control problems on time scales[J].International Journal of Difference Equations,2014,9(1):87-100.
[10]Martins N,Torres D F M.Noether’s symmetry theorem for nabla problems of the calculus of variations[J].Applied Mathematics Letters,2010,23(12):1432-1438.
[11]Bartosiewicz Z,Torres D F M.Noether’s theorem on time scales[J].Journal of Mathematical Analysis and Applications,2008,342(2):1220-1226.
[12]Malinowska A B,Torres D F M.The delta-nabla calculus of variations[J].Fasciculi Mathematici,2009,44:75-83.
[13]Girejko E,Malinowska A B,Torres D F M.A unified approach to the calculus of variations on time scales[C]//Proceedings of 2010 Chinese Control and Decision Conference.Shenyang,China:Northeastern University Press,2010:595-600.
[14]Torres D F M.The variational calculus on time scales[J].International Journal for Simulation & Multidis-ciplinary Design Optimization,2011,4(1):11-25.
Zhang Yi,Ding Jinfeng.Noether symmetries of generalized Birkhoff systems based on El-Nabulsi fractional model[J].Journal of Nanjing University of Science and Technology,2014,38(3):409-413.
[18]Zhang Hongbin,Gu Shulong.Lie symmetries and conserved quantities of Birkhoff systems with unilateral constraints[J].Chinese Physics B,2002,11(8):765-770.
[19]Cui Jinchao,Liu Shixing,Song Duan.A necessary and sufficient condition for transforming autonomous systems into linear autonomous Birkhoffian systems[J].Chinese Physics B,2013,22(10):104501.
[20]Chen Xiangwei,Mei Fengxiang.Constrained mechanical systems and gradient systems with strong Lyapunov functions[J].Mechanics Research Communications,2016,76:91-95.
[21]Luo Shaokai,Xu Yanli.Fractional Birkhoffian mechanics[J].Acta Mechanica,2015,226(3):829-844.
[22]Zhang Yi,Zhai Xianghua.Noether symmetries and conserved quantities for fractional Birkhoffian systems[J].Nonlinear Dynamics,2015,81(1):469-480.
[23]Kong Xinlei,Wu Huibin,Mei Fengxiang.Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms[J].Chinese Physics B,2016,25(1):010203.
[24]Bohner M,Peterson A.Dynamic equations on time scales—An introduction with applications[M].Boston,USA:Birkh?user,2001.
[25]Bohner M,Peterson A.Advances in dynamic equations on time scales[M].Boston,USA:Birkh?user,2003.
[26]Lakshmikantham V,Sivasundaram S,Kaymakcalan B.Dynamic systems on measure chains[M].Dordrecht,Netherlands:Kluwer Academic Publishers,1996.
[27]Gurses M,Guseinov G S,Silindir B.Integrable equations on time scales[J].Journal of Mathematical Physics,2005,46(11):113510.
[28]Song Chuanjing,Zhang Yi.Noether theorem for Birkhoffian systems on time scales[J].Journal of Mathematical Physics,2015,56(10):102701.
Zhang Yi.Noether theory for Hamiltonian system on time scales[J].Chinese Quarterly of Mechanics,2016,37(2):214-224.


Last Update: 2017-06-30