|Table of Contents|

Stability analysis of schistosomiasis model with differentinfection degrees(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年03期
Page:
364-
Research Field:
Publishing date:

Info

Title:
Stability analysis of schistosomiasis model with differentinfection degrees
Author(s):
Gan LijuanXue MengSakhone SysavathdyQi Longxing
School of Mathematical Sciences,Anhui University,Hefei 230601,China
Keywords:
infection degrees schistosomiasis disease-free equilibrium endemic equilibrium stability
PACS:
O151.26
DOI:
10.14177/j.cnki.32-1397n.2017.41.03.014
Abstract:
A schistosomiasis model with different infection degrees is established considering the fact that a mild infected person may convert into a severe infected person under some conditions.The equilibrium point and threshold of disease outbreak are calculated.According to the sign of the characteristic root and the principle of LaSalle invariance,the disease-free equilibrium is not only locally asymptotically stable but also globally asymptotically stable.According to the Hurwitz discriminant theorem,the endemic equilibrium is locally asymptotically stable,which is proved by simulation.The impact of different infection degrees on the number of patients and the basic reproduction number is discussed.It is found that the transformation from a mild infected person to a severe infected person produces more complex effects.

References:

[1] 李岩,周艺.我国血吸虫病现状及治疗药物[J].畜牧兽医杂志,2007,26(1):63-65.
Li Yan,Zhou Yi.Current situation and treatment of schistosomiasis in China[J].Journal of Animal Science and Veterinary Medicine,2007,26(1):63-65.
[2]周晓农,汪天平,王立英,等.中国血吸虫病流行现状分析[J].中华流行病学杂志,2004,25(7):555-558.
Zhou Xiaonong,Wang Tianping,Wang Liying,et al.The current status of schistosomiasis epidemics in China[J].Chinese Journal of Epidemiology,2004,25(7):555-558.
[3]郭家刚,余晴.近年来我国血吸虫病的流行态势及趋势[J].中国血吸虫病防治杂志,2005,17(5):321-323.
Guo Jiagang,Yu Qing.Prevalent status and trend of schistosomiasis of China in recent years[J].Chinese Journal of Schistosomiasis Control,2005,17(5):321-323.
[4]周述龙,林建银.血吸虫学[M].2版.北京:科学出版社,1989.
[5]李源培,周艺彪,姜庆五.血吸虫病传播数学模型的研究进展[J].中国血吸虫病防治杂志,2009,21(6):568-557.
Li Yuanpei,Zhou Yibiao,Jiang Qingwu.Progress of research on mathematical model for transmission of schistosomiasis[J].Chinese Journal of Schistoso-miasis Control,2009,21(6):568-571.
[6]吴开琛.血吸虫病数学模型和传播动力学及其应用[J].中国热带医学,2005,5(4):837-844.
Wu Kaichen.Mathematical model and transmission dynamics of schistosomiasis and its application[J].China Tropical Medicine,2005,5(4):837-844.
[7]孔庆凯,邱志鹏,邹云.一类媒介-宿主传染病传播动力学模型分析[J].南京理工大学学报,2012,36(2):304-308.
Kong Qingkai,Qiu Zhipeng,Zou Yun.Dynamics model analysis of vector-host epidemic disease transmission[J].Journal of Nanjing University of Science and Technology,2012,36(2):304-308.
[8]甘莉娟,薛梦,Sysavathdy S,等.血吸虫病在多个染病者群体传播的S-DI模型的稳定性分析[J].山西大同大学学报,2015,31(4):5-11.
Gan Lijuan,Xue Meng,Sysavathdy S,et al.The stability analysis of S-DI model of schistosomiasis spread in the multiple infected population[J].Journal of Shanxi Datong University,2015,31(4):5-11.
[9]Medlock J M,Leach S A.Effect of climate change on vector-borne disease risk in the UK[J].Lancet Infectious Diseases,2015,15(6):721-730.
[10]Britton T,House T,Lloyd A L,et al.Five challenges for stochastic epidemic models involving global transmission[J].Epidemics,2015,10:54-57.
[11]龚震宇,杨小平.全球血吸虫病流行概况[J].疾病监测,2011,26(6):504-505.
Gong Zhenyu,Yang Xiaoping.Epidemic situation of schistosomiasis in the world[J].Disease Surveillance,2011,26(6):504-505.
[12]高鹏.日本血吸虫宿主易感性比较及与外睾吸虫在钉螺体内相互作用的研究[D].厦门:厦门大学生命科学学院,2011.
[13]Qi Longxing,Cui Jing’an,Gao Yuan.Modeling the schistosomiasis on the islets in Nanjing[J].International Journal of Biomathematics,2012,5(4):1-17.
[14]van den Driessche P,Watmough J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Mathematical Biosciences,2001,180:29-48.
[15]马知恩,周义仓.常微分方程的定性与稳定性方法[M].北京:科学出版社,2001.
[16]Ma Zhien,Liu Jianping,Li Jia.Stability analysis for differential infectivity epidemic models[J].Nonlinear Analysis:Real World Applications,2003,4(5):841-856.
[17]王高雄,周之铭,朱思铭,等.常微分方程[M].北京:高等教育出版社,2006.
[18]马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004.

Memo

Memo:
-
Last Update: 2017-06-30