|Table of Contents|

Blind compressive sensing method via local sparsity and nonlocal similarity(PDF)


Research Field:
Publishing date:


Blind compressive sensing method via local sparsity and nonlocal similarity
Feng LeiSun Huaijiang
School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
blind compressive sensing sparse representation dictionary study nonlocal similarity alternating direction method of multipliers.
In order to reduce the sampling rate of the traditional blind compressive sensing image recovery method,this paper proposes a novel blind compressive sensing image recovery approach.The method simultaneously exploits the local patch sparsity and nonlocal patch similarity.In addition,it employs an alternating direction method of multipliers to solve the resulting non-convex optimization problem.The method can accurately recover the original image.Experimental results have demonstrated that the proposed method can significantly reduce the sampling rate without sacrificing the quality of the reconstructed image.


[1] Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[2]Candès E J,Wakin M B.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
Ren Yuemei,Zhang Yanning,Li ying.Advances and perspective on compressed sensing and application on image processing[J].Acta Automatica Sinica,2014,40(8):1563-1575.
Li Huihui,Zeng Yan,Yang Ning,et al.Improved compressed sensing reconstruction algorithm and its application in image fusion[J].Journal of Nanjing University of Science and Technology,2014(2):259-263.
Li Xingxiu,Wei Zhihui,Xiao Liang.Compressed sensing image sequence reconstruction algorithm based on sparse support prior[J].Journal of Nanjing University of Science and Technology,2012,36(6):973-978.
[6]Zhang Jian,Zhao Debin,Zhao Chen,et al.Compressed sensing recovery via collaborative sparsity[C]//Proceedings of the 2012 Data Compression Conference.Snowbird,UT,USA:IEEE Computer Society,2012:287-296.
[7]He Lihan,Carin L.Exploiting structure in wavelet-based Bayesian compressive sensing[J].IEEE Transactions on Signal Processing,2009,57(9):3488-3497.
[8]Gleichman S,Eldar Y C.Blind compressed sensing[J].IEEE Transactions on Information Theory,2010,57(10):6958-6975.
[9]Lingala S G,Jacob M.Blind compressive sensing dynamic MRI.[J].IEEE Transactions on Medical Imaging,2013,32(6):1132-1145.
[10]Studer C,Baraniuk R G.Dictionary learning from sparsely corrupted or compressed signals[C]//International Conference on Acoustics,Speech,and Signal Processing.Kyoto,Japan:IEEE Computer Society,2012:3341-3344.
Wu Chao,Wang Yong,Tian Hongwei,et al.Image reconstruction method based on blind compressed sensing model[J].Systems Engineering and Electronics,2014,36(6):1050-1056.
Fang Biao,Huang Gaoming,Gao Jun.Image reconstruction method based on blind compressed sensing model[J].Acta Automatica Sinica.2015,41(3):591-600.
[13]Dabov K,Foi A,Katkovnik V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095.
[14]Dong Weisheng,Shi Guangming,Li Xin,et al.Image reconstruction with locally adaptive sparsity and nonlocal robust regularization[J].Signal Processing:Image Communication,2012,27(10):1109-1122.
[15]Mairal J,Bach F,Ponce J,et al.Non-local sparse models for image restoration[C]//IEEE International Conference on Computer Vision.Kyoto,Japan:IEEE Computer Society,2009:2272-2279.
[16]Zhang Jian,Zhao Debin,Gao Wen.Group-based sparse representation for image restoration[J].IEEE Transactions on Image Processing,2014,23(8):3336-3351.
[17]Feng Lei,Sun Huaijing,Sun Quansen,et al.Image compressive sensing via Truncated Schatten-p,Norm regularization[J].Signal Processing Image Communication,2016,47:28-41.
[18]Feng Lei,Sun Huaijiang,Sun Quansen,et al.Compressive sensing via nonlocal low-rank tensor regularization[J].Neurocomputing,2016,216:45-60.
[19]Shu Xianbiao,Yang Jianchao,Ahuja N.Non-local compressive sampling recovery[C]//International Conference on Computational Photography.Santa Clara,CA,USA:IEEE Computer Society,2014:1-8.
[20]Aharon M,Elad M,Bruckstein A.K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
[21]Aghagolzadeh M,Radha H.Dictionary and image recovery from incomplete and random measurements[J].Computer Science,2015,arXiv:1508.00282.
[22]Zhang Jian,Zhao Chen,Zhao Debin,et al.Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization[J].Signal Processing,2014,103(10):114-126.


Last Update: 2017-08-31