|Table of Contents|

Soft sensor modeling method based on improved expandingsearching clustering algorithm(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年05期
Page:
574-
Research Field:
Publishing date:

Info

Title:
Soft sensor modeling method based on improved expandingsearching clustering algorithm
Author(s):
Zhang SunliYang Huizhong
Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Jiangnan University,Wuxi 214122,China
Keywords:
densities threshold Gaussian process regression expanding searching clusting algorithm soft sensor modeling
PACS:
TP274
DOI:
10.14177/j.cnki.32-1397n.2017.41.05.006
Abstract:
An improved expanding searching clustering algorithm is proposed to overcome the shortcomings of the traditional clustering methods relying on data space distribution and prior knowledge too much.In consideration of the effects of the sample density on the searching radlus,the improved algorithm selects different searching radius according to the density of each sample point.For all sample distribution shapes,the threshold value is applied to choose different clustering methods relying on different density points.Sample data is clustered by using the improved expanding searching clustering algorithm.All soft sensor models are built up by Gaussian process regression(GPR).The final model is formed by using the switch fusion mode according to the results of clustering.A sample of a bisphenol-A production crystallization unit is applied to make a simulation for building the soft-sensor model of the phenol concentration at the exit device and the good experiment results are obtained.

References:

[1] Jin Huaiping,Chen Xiangguang.Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes[J].Chemical Engineering Science,2015,131:282-303.
[2]Jin Huaiping,Chen Xiangguang.Dual learning-based online ensemble regression approach for adaptive soft sensor modeling of nonlinear time-varying processes[J].Chemometrics and Intelligent Laboratory Systems,2016,151:228-244.
[3]孙建平,苑一方.复杂过程的多模型建模方法研究[J].仪器仪表学报,2011,32(1):132-137.
Sun Jianping,Yuan Yifang.Multi-mode modeling approach for complex proces[J].Chinese Journal of Scientific Instrument,2011,32(1):132-137.
[4]王海宁,夏陆岳,周猛飞,等.过程工业软测量中的多模型融合建模方法[J].化工进展,2014,33(12):3157-3163.
Wang Haining,Xia Luyue,Zhou Mengfei,et al.Multi-model fusion modeling method for process industries soft sensor[J].Chemical Industry and Engineering Progress,2014,33(12):3157-3163.
[5]李修亮,苏宏业,褚健.基于在线聚类的多模型软测量建模方法[J].化工学报,2007,58(11):2834-2839.
Li Xiuliang,Su Hongye,Chu Jian.Multiple models soft-sensing technique based on online clustering arithmetic[J].Journal of Chemical Industry and Engineering,2007,58(11):2834-2839.
[6]杨慧中,张文清.基于特征加权模糊聚类的多模型软测量建模[J].控制工程,2011,18(4):524-527.
Yang Huizhong,Zhang Wenqing.Multi-model soft-sensor modeling based on feature weighted fuzzy clustering[J].Control Engineering of China,2011,18(4):524-527.
[7]傅永峰,徐欧官,陈祥华,等.基于多模型动态融合的自适应软测量建模方法[J].高校化学工程学报,2015,29(5):1186-1193.
Fu Yongfeng,Xu Ouguan,Chen Xianghua,et al.An adaptive soft sensor modeling method based on multi-model dynamic fusion[J].Journal of Chemical Engineering of Chinese Universities,2015,29(5):1186-1193.
[8]双翼帆,顾幸生.基于改进的快速搜索聚类算法和高斯过程回归的催化重整脱氯前氢气纯度多模型建模方法[J].化工学报,2016,67(3):765-772.
Shuang Yifan,Gu Xingsheng.Multi-model soft sensor for hydrogen purity in catalytic reforming process based on improved fast search clustering algorithm and Gaussian processes regression[J].CIESE Journal,2016,67(3):765-772.
[9]钟伟民,李杰.基于FCM聚类的气化炉温度多模型软测量建模[J].化工学报,2012,63(12):3951-3955.
Zhong Weimin,Li Jie.A soft sensor multi-modeling for furnace temperature of gasifier based FCM clustering[J].CIESE Journal,2012,63(12):3951-3955.
[10]杨会锋,曹洁.基于改进K-均值聚类算法的背景建模方法[J].电子测量与仪器学报,2010,24(12):1114-1118.
Yang Huifeng,Cao Jie.Background modeling method based on the improved K-means clustering algorithm[J].Journal of Electronic Measurement and Instrument,2010,24(12):1114-1118.
[11]彭琛.基于聚类的多模型蒸发过程软测量建模[J].系统仿真学报,2015,27(9):2050-2055.
Peng Chen.Mufti-model soft modeling based on clustering in evaporation process[J].Journal of System Simulation,2015,27(9):2050-2055.
[12]孙茂伟.基于改进仿射传播聚类的多模型软测量建模及应用[J].南京理工大学学报,2016,40(2):204-211.
Sun Maowei.Multi-model soft-sensor modeling based on improved affinity propagation clustering algorithm and application[J].Journal of Nanjing University of Science and Technology,2016,40(2):204-211.
[13]Chen Jinyin,He Huihao.A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data[J].Information Science,2016,45(3):271-293.
[14]陈定三.用于多模型软测量的扩张搜索聚类算法[J].计算机与应用化学,2011,28(4):407-410.
Chen Dingsan.Multiple model soft sensor technique based on expanding search clustering algorithm[J].Computers and Applied Chemistry,2011,28(4):407-410.

Memo

Memo:
-
Last Update: 2017-09-30