|Table of Contents|

Designing adaptive sliding mode controller for an eight-rotor MAV(PDF)


Research Field:
Publishing date:


Designing adaptive sliding mode controller for an eight-rotor MAV
Zhang Lei1Wang Guan1Yang Xibei2Wang Pingxin3
1.Xuzhou Kindergarten Teachers College,Xuzhou 221004,China; 2.School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212003,China; 3.School of Sciences,Jiangsu University of Science and Technology,Zhenjiang 212003,China
interval type-Ⅱ fuzzy neural network adaptive sliding mode controller eight-rotor micro aircraft vehicle attitude contral strategy uncertainties enternal disturbances
This paper focuses on intelligent control of the eight-rotor micro aircraft vehicle(MAV)which is used to obtain stable control due to uncertainties. This paper designs a robust and stable attitude control strategy for the eight-rotor MAV to accommodate system uncertainties,variations,and external disturbances. Firstly,by employing interval type-Ⅱ fuzzy neural network to approximate the nonlinearity function and uncertainty functions. The parameters of the interval type-Ⅱ fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on Lyapunov synthesis approach,and the Lyapunov stability theorem has been used to testify the asymptotic stability. The simulation results show that the performance of interval type-Ⅱ fuzzy neural network based adaptive sliding mode controller can guarantee the eight-rotor MAV control system with good performances under uncertainties,variations,and external disturbances,and which is significantly improved compared with the conventional adaptive sliding mode controller,type-Ⅰ fuzzy neural network based sliding mode controller.


[1] Spooner J T,Passino M. Stable adaptive control using fuzzy systems and neural networks[J]. IEEE Transactions on Fuzzy Systems,1996,4(3):339-359. [2]Ordonez R,Passino K. Stable multi-input multi-output adaptive fuzzy/neural control[J]. IEEE Transactions on Fuzzy Systems,1999,7(3):345-353. [3]Melin P,Castillo O. A new method for adaptive model-based control of non-linear dynamic plants using a neuro-fuzzy-fractal approach[J]. Soft Computing,2001,5(2):171-177. [4]Luo Xiong,Sun Zengqi,Sun Fuchun. A new approach to fuzzy modeling and control for nonlinear dynamic systems:Neuro-fuzzy dynamic characteristic modeling and adaptive control mechanism[J]. International Journal of Control,Automation,and Systems,2009,7(1):123-132. [5]Melin P,Castillo O. Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach[J]. IEEE Transactions on Industrial Electronics,2001,48(5):951-955. [6]Meng J E,Chang B L,Nah K H,et al. Real-time implementation of a dynamic fuzzy neural networks controller for a SCARA[J]. Microprocessors and Microsystems,2002,26(9-10):449-461. [7]廖传柱,张旦,江铭炎. 基于ABC-PCNN模型的图像分割[J]. 南京理工大学学报,2014,38(4):558-565. Liao Chuanzhu,Zhang Dan,Jiang Mingyan. Image segmentation based on ABC-PCNN model[J]. Journal of Nanjing University of Science and Technology,2014,38(4):558-565. [8]付思源,王华东. 和声搜索算法优化神经网络的无线网络室内定位[J]. 南京理工大学学报,2017,41(4):428-433. Fu Siyuan,Wang Huadong. Indoor positioning of wireless network based on harmony search algorithm optimizing neural network[J]. Journal of Nanjing University of Science and Technology,2017,41(4):428-433. [9]Lee C H,Lin Y C,Lai W Y. Systems identification using type-Ⅱ fuzzy neural network(type-Ⅱ FNN)systems[C]//IEEE International Symposium on Computational Intelligence in Robotics and Automation. Kobe,Japan:IEEE,2003:1264-1269. [10]Wang C H,Cheng C S,Lee T T. Dynamic optimal training for interval type-Ⅱ fuzzy neural network(T2FNN)[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics,2004,34(3):1462-1477. [11]陈向坚,李迪,白越,等,模糊神经网络在自适应双轴运动控制系统中的应用[J]. 光学精密工程,2011,19(7):1643-1653. Chen X H,Li D,Bai Y,et al. Application of type-Ⅱ fuzzy neural network to adaptive double axis motion control system[J]. Optics and Precision Engineering,2011,19(7):1643-1653. [12]李迪,陈向坚,续志军,等. 自组织递归区间二型模糊神经网络在动态时变系统辨识中的应用[J]. 光学精密工程,2011,19(6):1406-1413. Li D,Chen X J,Xu Z J,et al. Type-Ⅱ fuzzy neural networks with self-organizing recurrent intervals for dynamic time-varying system identification[J]. Optics and Precision Engineering,2011,19(6):1406-1413. [13]Wang C H,Cheng C S,Lee T T. Dynamical optimal training for interval type-2 fuzzy neural network(T2FNN)[J]. IEEE Transactions on Systems,Man,and Cybernetics,2004,34(3):1462-1477. [14]Mendez G M,Maria D L,HernaNdez A. Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems[J]. Information Sciences,2013,220:149-169. [15]Chen C S,Lin W C. Self-adaptive interval type-2 neural fuzzy network control for PMLSM drives[J]. Expert Systems with Applications,2011,38:14679-14689. [16]Lin T C. Based on interval type-Ⅱ fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems[J]. Commun Nonlinear Sci Numer Simulat,2010,15:4084-4099. [17]Lin F J,Chou P H. Adaptive control of two-axis motion control system using interval type-Ⅱ fuzzy neural network[J]. IEEE Transactions on Industrial Electronics,2008,56(1):178-193. [18]Lin F,Chou P,Shieh P,et al. Robust control of an LUSM-based x-y-tha motion control stage using an adaptive interval type-Ⅱ fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems,2009,17(1):24-38. [19]Chen X K. Adaptive sliding mode control for discrete-time multi-input multi-output systems[J]. Automatica,2006,42(3):427-435. [20]Hung L C,Chung H Y. Decoupled control using neural network-based sliding-mode controller for nonlinear systems[J]. Expert Systems with Applications,2007,32(4):1168-1182. [21]Lin P Z,Wang W Y,Lee T T,et al. On-line genetic algorithm-based fuzzy-neural sliding mode controller using improved adaptive bound reduced-form genetic algorithm[J]. International Journal of Systems Science,2009,40(6):571-582.


Last Update: 2018-02-28