[1] Ge Z,Song Z,Gao F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research,2013,52(10):3543-3562.
[2]周东华,史建涛,何潇. 动态系统间歇故障诊断技术综述[J]. 自动化学报,2014,40(2):161-171.
Zhou Donghua,Shi Jiantao,He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica,2014,40(2):161-171.
[3]杨青,孙佰聪,朱美臣,等. 基于小波包熵和聚类分析的滚动轴承故障诊断方法[J]. 南京理工大学学报,2013,37(4):517-523.
Yang Qing,Sun Baicong,Zhu Meichen,et al. Rolling bearing fault diagnosis method based on wavelet packet entropy and clustering analysis[J]. Journal of Nanjing University of Science and Technology,2013,37(4):517-523.
[4]Yao Y,Gao F. A survey on multistage/multiphase statistical modeling methods for batch processes[J]. Annual Reviews in Control,2009,33(2):172-183.
[5]Lee J M,Qin S J,Lee I B. Fault detection and diagnosis based on modified independent component analysis[J]. Aiche Journal,2006,52(10):3501-3514.
[6]郑宇杰,杨静宇,吴小俊,等. 基于对称ICA的特征抽取方法及其在人脸识别中的应用[J]. 南京理工大学学报,2006,19(1):116-212.
Zheng Yujie,Yang Jingyu,Wu Xiaojun,et al. Feature extraction based on symmetrical ICA and its application to face recognition[J]. Journal of Nanjing University of Science and Technology,2006,19(1):116-212.
[7]曾生根. 快速独立分量分析方法及其在图像分析中的若干应用研究[D]. 南京:南京理工大学自动化学院,2004:26-40.
[8]高学金,崔宁,张亚潮,等. 基于粒子群优化MICA的间歇过程故障监测[J]. 仪器仪表学报,2015,36(1):152-159.
Gao Xuejin,Cui Ning,Zhang Yachao,et al. Fault detection of batch processes based on MICA optimized with PSO[J]. Chinese Journal of Scientific Instrument,2015,36(1):152-159.
[9]Jia M,Chu F,Wang F,et al. On-line batch process monitoring using batch dynamic kernel principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems,2010,101(2):110-122.
[10]Chen J,Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chemical Engineering Science,2002,57(1):63-75.
[11]Yu J,Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. Aiche Journal,2008,54(7):1811-1829.
[12]张淑美,王福利,谭帅,等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报,2016,42(1):60-80.
Zhang Shumei,Wang Fuli,Tan Shuai,et al. A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica,2016,42(1):60-80.
[13]胡永兵,高学金,李亚芬,等. 基于仿射传播聚类子集主元分析的间歇过程监测方法[J]. 化工学报,2016,67(5):1989-1997.
Hu Yongbing,Gao Xuejin,Li Yafen,et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal,2016,67(5):1989-1997.
[14]Tax D M J,Duin R P W. Support vector domain description[J]. Pattern Recognition Letters,1999,20(11-13):1191-1199.
[15]Tax D M J,Duin R P W. Support vector data description[J]. Machine Learning,2004,54(1):45-66.
[16]Lee S W,Park J,Lee S W. Low resolution face recognition based on support vector data description[J]. Pattern Recognition,2006,39(9):1809-1812.
[17]Yao M,Wang H,Xu W. Batch process monitoring based on functional data analysis and support vector data description[J]. Journal of Process Control,2014,24(7):1085-1097.
[18]杨雅伟,宋冰,侍洪波. 多SVDD模型的多模态过程监控方法[J]. 化工学报,2015,66(11):4526-4533.
Yang Yawei,Song Bing,Shi Hongbo. Multimode processes monitoring method via multiple SVDD model[J]. CIESC Journal,2015,66(11):4526-4533.
[19]Ge Z Q,Song Z H. Bagging support vector data description model for batch process monitoring[J]. Journal of Process Control,2013,23(8):1090-1096.
[20]谢彦红,孙呈敖,李元. 基于滑动窗口SVDD的间歇过程故障监测[J]. 信息与控制,2015,44(5):531-537.
Xie Yanhong,Sun Chengao,Li Yuan. Fault monitoring of batch process based on moving window SVDD[J]. Information and Control,2015,44(5):531-537.
[21]Wise B M,Gallagher N B,Butler S W,et al. A comparison of principal component analysis,multiway principal component analysis,trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process[J]. Journal of Chemometrics,1999,13(3-4):379-396.
[22]陶栋琦,薄翠梅,易辉. 基于多时段MPCA的半导体蚀刻过程监测方法[J]. 传感技术学报,2015(6):798-802.
Tao Dongqi,Bo Cuimei,Yi Hui. Semiconductor etch process monitoring based on multi-stage MPCA[J]. Chinese Journal of Sensors and Actuators,2015(6):798-802.
[23]Ge Z,Gao F,Song Z. Batch process monitoring based on support vector data description method[J]. Journal of Process Control,2011,21(6):949-959.
[24]Li G,Hu Y,Chen H,et al. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm[J]. Energy & Buildings,2016,116:104-113.