|Table of Contents|

Radar target multi-classifier integration algorithm based on water-filling theory(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2018年03期
Page:
380-
Research Field:
Publishing date:

Info

Title:
Radar target multi-classifier integration algorithm based on water-filling theory
Author(s):
Chen ZhirenGu Hong
School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
water-filling theory radar targets multi-classifiers fusion coefficient matrix
PACS:
TN957.51
DOI:
10.14177/j.cnki.32-1397n.2018.42.03.019
Abstract:
Different classifiers are integrated to overcome the performance limitation of a single classifier and obtain higher performance of radar target classification. According to different target features and different classification performances of each classifier obtained by training samples,a fusion coefficient matrix of different classifiers integration is calculated based on the water-filling theory. A decision threshold is set for the output coefficient matrix. Experimental results of measured radar data show that the average recognition rate of the proposed method is 87.68%.

References:

[1] Dara R A,Kamel M S,Wanas N. Data dependency in multiple classifier system[J]. Pattern Recognition,2009,42(7):1260-1273. [2]Sun S. Local within-class accuracies for weighting individual outputs in multiple classifier systems[J]. Pattern Recognition Letters,2010,31(2):119-124. [3]Dietterich T G. Machine-learning research[J]. AI Magazine,1997,18(4):97-136. [4]Kittle J,Hatef M,Duin R,et al. On combining classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(3):226-239. [5]Singh S,Choi K,Kodadi A,et al. Dynamic fusion of classifiers for fault diagnosis[C]//IEEE SMC Conference. New York,USA:IEEE Press,2007:2467-2472. [6]Radtke P,Granger E,Sabourin R,et al. Adaptive ensemble selection for face re-identification under class imbalance[C]//Proceedings of the 11th International Workshop on Multiple Classifier Systems. Nanjing,China:Sprinter Verlag,2013:95-108. [7]张学峰,王鹏辉,冯博,等. 基于多分类器融合的雷达高分辨距离像目标识别与拒判新方法[J]. 自动化学报,2014,40(2):348-356. Zhang Xuefeng,Wang Pengfui,Feng Bo,et al. A new method to improve radar HRRP recognition and outlier rejection performances based on classifier combination[J]. Acta Automatica Sinica,2014,40(2):348-356. [8]吕婧,顾红,苏卫民,等. 基于keystone变换的噪声调频连续波雷达高速目标探测[J]. 南京理工大学学报,2014,38(6):707-714. Lv Jing,Gu Hong,Su Weimin,et al. High speed moving target detection using noise modulated continuous wave radar based on keystone transform[J]. Journal of Nanjing University of Science and Technology,2014,38(6):707-714. [9]Kittler J,Hojjatoleslami A,Windeatt T. Strategies for combining classifiers employing shared and distinct pattern representations[J]. Pattern Recognition Letters,1997,18(11-13):1373-1377. [10]Denoeux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory[J]. IEEE Transactions on Systems,Man and Cybernetics,1995,25(5):804-813. [11]Kuncheva L I. Switching between selection and fusion in combining classifiers:An experiment[J]. IEEE Transactions on Systems,Man & Cybernetics:Part B,2002,32(2):146-156. [12]Ceccareli M,Petrosino A. Multi-feature adaptive classifiers for SAR image segmentation[J]. Neurocomputing,1997,14(4):345-363. [13]严爱军,钱丽敏,王普. 案例推理属性权重的分配模型比较研究[J]. 自动化学报,2014,40(9):1896-1902. Yan Aijun,Qian Limin,Wang Pu. A comparative study of attribute weights assignment for case-based reasoning[J]. Acta Automatica Sinica,2014,40(9):1896-1902. [14]陈志仁,顾红,苏卫民,等. 基于特征概率分布的低分辨雷达地面目标分类[J]. 系统工程与电子技术,2016,38(2):274-280. Chen Zhiren,Gu Hong,Su Weimin,et al. Ground target classification for low-resolution radar based on the probability distribution of feature[J]Systems Engineering and Electronics,2016 38(2):274-280.

Memo

Memo:
-
Last Update: 2018-06-30