|Table of Contents|

Algorithm of edge detector choice based on local entropy(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2018年04期
Page:
424-
Research Field:
Publishing date:

Info

Title:
Algorithm of edge detector choice based on local entropy
Author(s):
Ling JunSong QixiangFang AidongLi Xianwei
Information Engineering College,Suzhou University,Suzhou 234000,China
Keywords:
detector choice edge detection edge-point-weight local entropy edge local entropy edge-point-weight average edge local entropy
PACS:
TP391
DOI:
10.14177/j.cnki.32-1397n.2018.42.04.006
Abstract:
To choose suitable edge detectors in image processing and promise quality of edge extraction,an edge-point-weight average edge local entropy is presented. A choice algorithm of edge detectors with edge-point-weight average edge local entropy is studied. Firstly,image edge is drawn out by edge detector and local entropy of image edge is caculated. Secondly,edge-point-weight average edge local entropy of image edge is obtained by weighting local entropy of image edge with edge grey. Edge detector is chosen with edge-point-weight average edge local entropy. Experimental result demonstrates that the algorithm is valid in choosing suitable edge detector and can promise quality of image edge.

References:

[1] 凌军. 图像增强中边缘检测算子的选择算法[J]. 宿州学院学报,2015,30(11):102-103.
Ling Jun. Algorithm of choosing edge detector in image enhancement[J]. Journal of Suzhou University,2015,30(11):102-103.
[2]Asha A A,Wenisch S M. Edge detection using multiple ant colony approach[J]. TEM Journal,2017,6(1):137-142.
[3]秦剑,李林. 基于梯度的图像分割新方法[J]. 计算机应用,2009,29(8):2071-2073.
Qin Jian,Li Lin. New image segmentation method based on gradient[J]. Journal of Computer Applications,2009,29(8):2071-2073.
[4]张光年,葛庆平. 基于Marr-Hildreth算子多尺度图像边缘检测[J]. 首都师范大学学报,2005,26(3):17-21.Zhang Guangnian,Ge Qinpin. Multi-scale image edge detection based on Marr Hildreth operator algorithm[J]. Journal of Capital Normal University,2005,26(3):17-21.
[5]魏伟波,芮筱亭. 图像边缘检测方法研究[J]. 计算机工程与应用,2006,42(30):88-92.
Wei Weibo,Rui Xiaoting. Study on edge detection method[J]. Computer Engineering and Applications,2006,42(30):88-92.
[6]刘锁兰. 基于模糊理论的图像分割区域法研究[D]. 南京:南京理工大学计算机科学与工程学院,2008.
[7]Cai Zhaoquan,Liang Yihui,Huang Han. Unsupervised segmentation evaluation:an edge-based method[J]. Multimedia Tools and Applications,2017,76(8):11097-11110.
[8]石丹. 基于数据合并策略的图像分割质量评价技术研究[D]. 西南交通大学信息科学与技术学院,2016.
[9]Cruz H,Eckert M,Meneses J M,et al. Fast evaluation of segmentation quality with parallel computing[J]. Scientific Programming,2017.
[10]Alvarado-Cervantes Rodolfo,Felipe-Riverón E M,Khartchenko V,et al. An adaptive color similarity function suitable for image segmentation and its numerical evaluation[J]. Color Research & Application,2017,42(2):156-172.
[11]Gon?alves V M,Delamaro M E,Nunes F L S. Applying graphical oracles to evaluate image segmentation results[J]. Journal of the Brazilian Computer Society,2017,23(1):1-17.
[12]Su Tengfei,Zhang Shengwei. Local and global evaluation for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,130:256-276.
[13]岳改丽,王栋,杨蕊. 几种边缘检测算子在红外图像处理方面应用研究[J]. 西安科技大学学报,2012,32(4):500-504.
Yue Gaili,Wang Dong,Yang Rui. Application of several edge detection operators in infrared images processing[J]. Journal of Xi’an University of Science and Technology,2012,32(4):500-504.
[14]磨少清. 边缘检测及其评价方法的研究[D]. 天津:天津大学电气与自动化学院,2011.

Memo

Memo:
-
Last Update: 2018-08-30