|Table of Contents|

Optimization on machine tool pillar based on response suefacemodel and genetic algorithm(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2018年04期
Page:
453-
Research Field:
Publishing date:

Info

Title:
Optimization on machine tool pillar based on response suefacemodel and genetic algorithm
Author(s):
Wang LeiWang MingXing Yipeng
School of Mechanical and Automotive Engineering,Anhui Polytechnic University,Wuhu 241000,China
Keywords:
machine tool pillar response surface model genetic algorithm pareto optimal solution parameter optimization central composite design sensitivity analysis design variable
PACS:
TH122
DOI:
10.14177/j.cnki.32-1397n.2018.42.04.010
Abstract:
An optimization method based on response surface model and genetic algorithm is proposed to deal with the optimal design problem for machine tool pillars. The Latin hypercube design scheme is used to carry out the experiment. Meanwhile,sampling points in the design space and numerical simulation are executed for constructing the response surface model of the three indexes for pillar:the maximal deformation,the first-order natural frequency and its total mass. The response surface model is further optimized by using the genetic algorithm,and the Pareto optimal solutions are obtained. The experimental results show that compared with the original design scheme,the optimized total mass is reduced by 7.2%; the first-order to sixth-order natural frequencies and the maximal deformation of the pillar have different improvements. Therefore,the proposed method is more suitable for parameters optimization on the machine tools and similar complex structure.

References:

[1] 罗辉,陈蔚芳,叶文华. 机床立柱灵敏度分析及多目标优化设计[J]. 机械科学与技术,2009,28(4):487-491.
Luo Hui,Chen Weifang,Ye Wenhua. Sensitivity analysis and multi-objective optimization design of a machine column[J]. Mechanical Science and Technology,2009,28(4):487-491.
[2]Wang Y,Xie J,Wang Z,et al. A parametric FEA system for fixturing of thin-walled cylindrical components[J]. Journal of Materials Processing Technology,2008,205(1-3):338-346.[3]张耀满,王旭东,蔡光起,等. 高速机床有限元分析及其动态性能试验[J]. 组合机床与自动化加工技术,2004(12):15-17.
Zhang Yaoman,Wang Xudong,Cai Guangqi,et al. FEA and dynamic characteristic experiment of high speed machine tool[J]. Modular Machine Tool & Automatic Manufacturing Technique,2004(12):15-17.
[4]Zhang Y W,Zhang W M. Analysis of dynamics characters of bed structure of CNC machine tool on FEM method[J]. Applied Mechanics & Materials,2011,141:208-211.
[5]邵睿,张建富,冯平法,等. 基于主机动态性能的立柱优化方法研究[J]. 机械科学与技术,2015,34(9):1313-1316.Shao Rui,Zhang Jianfu,Feng Pingfa,et al. Study on column structural optimization based on dynamic characteristic of machine tools[J]. Mechanical Science and Technology,2015,34(9):1313-1316.
[6]郭志全,徐燕申,张学玲,等. 基于有限元的加工中心立柱结构静、动态设计[J]. 机械强度,2006,28(2):287-291.
Guo Zhiquan,Xu Yanshen,Zhang Xueling,et al. Research on structure static and dynamic design based on FEA of machining center columns[J]. Journal of Mechanical Strength,2006,28(2):287-291.
[7]仇家强,张健,牛卫朋,等. 基于元结构的立柱结构动态优化设计[J]. 机械设计,2014,31(12):54-58.
Qiu Jiaqiang,Zhang Jian,Niu Weipeng,et al. Dynamic optimization of column srtucture based on unit structure[J]. Journal of Machine Design,2014,31(12):54-58.
[8]唐勇. 铝合金热态内高压成形工艺研究[D]. 合肥:合肥工业大学研究生院,2010.
[9]于海莲,王永泉,陈花玲,等. 响应面模型与多目标遗传算法相结合的机床立柱参数优化[J]. 西安交通大学学报,2012,46(11):80-85.
Yu Hailian,Wang Yongquan,Chen Hualing,et al. Optimization for machine tool column combining response surface model with multi-objective genetic algorithm[J]. Journal of Xi’an Jiaotong University,2012,46(11):80-85.
[10]王英乾,刘强,夏鸿建,等. 基于遗传算法精密机床立柱的多目标优化[J]. 机床与液压,2014,42(21):157-160.
Wang Yingqian,Liu Qiang,Xia Hongjian,et al. Multi-objective optimization for column of precision machine tools based on genetic algorithm[J]. Machine Tool & Hydraulics,2014,42(21):157-160.
[11]武和全,毛鸿锋,侯海彬. 复合材料仿竹薄壁管耐撞性和可靠性研究[J]. 南京理工大学学报,2017,41(2):186-190.
Wu Hequan,Mao Hongfeng,Hou Haibin. Study on crashworthiness and reliability of compositebamboo-like thin-walled tube[J]. Journal of Nanjing University of Science and Technology,2017,41(2):186-190.
[12]王萌,张合,王晓锋,等. 响应面法复合车身结构优化[J]. 南京理工大学学报,2017,41(2):145-151.
Wang Meng,Zhang He,Wang Xiaofeng,et al. Composite body structure optimization based on response surface approximation method[J]. Journal of Nanjing University of Science and Technology,2017,41(2):145-151.
[13]薛彩军,谭伟,徐奋进,等. 基于响应面模型的结构疲劳寿命优化方法[J]. 南京理工大学学报,2011,35(6):843-846.
Xue Caijun,Tan Wei,Xu Fenjin,et al. Structural fatigue life optimization method based on response surface model[J]. Journal of Nanjing University of Science and Technology,2011,35(6):843-846.
[14]王雷,蔡劲草,朱廷焕,等. 基于A13型减振器的胀包模具自动脱料机构优化设计研究[J]. 宁波大学学报(理工版),2016,29(2):63-66.
Wang Lei,Cai Jingcao,Zhu Tinghuan,et al. An automatic stripping mechanism of the bulging die based on A13 shock absorber:optimization design[J]. Journal of Ningbo University(Natural Science & Engineering Edition),2016,29(2):63-66.
[15]潘林锋,周昌玉,陈士诚. 基于中心复合实验设计的区间有限元方法[J]. 机械设计与制造,2011(11):11-13.
Pan Linfeng,Zhou Changyu,Chen Shicheng. Interval finite element method based on central composite experimental design[J]. Machinery Design & Manufacture,2011(11):11-13.
[16]窦毅芳,刘飞,张为华. 响应面建模方法的比较分析[J]. 工程设计学报,2007,14(5):359-363.
Dou Yifang,Liu Fei,Zhang Weihua. Research on comparative analysis of response surface methods[J]. Journal of Engineering Design,2007,14(5):359-363.

Memo

Memo:
-
Last Update: 2018-08-30