|Table of Contents|

Structure and performance of disc-type magnetorheologicalfluid brake based on CFD(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2018年04期
Page:
474-
Research Field:
Publishing date:

Info

Title:
Structure and performance of disc-type magnetorheologicalfluid brake based on CFD
Author(s):
Bai Zongchun12Lv Xiaolan12
1.Institute of Agricultural Facilities and Equipment; 2.Key Laboratory of Protected AgricultureEngineering in the Middle and Lower Reaches of Yangtze River,Ministry of Agriculture,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China
Keywords:
magnetorheological fluid disc-type brake flow field simulation Bingham model braking torque apparent viscosity shear stress
PACS:
TG156; TP319
DOI:
10.14177/j.cnki.32-1397n.2018.42.04.013
Abstract:
In order to study the effect of turntable structure on the performance of disc-type the magnetorheological fluid(MRF)brake,simulations and experiments of the MRF in the brake are carried out. A computational fluid dynamics(CFD)model of the MRF in the brake is built according to the structural characteristics of the brake and the Bingham model of MRF. Simulations with ring grooves,radial grooves and through holes on the surface of the turntable are carried out at a certain speed and magnetic field strength using Fluent respectively. The velocity,pressure,viscosity and shear stress distribution of the MRF flow in the brake are analyzed. The braking torque of the MRF acting on the turntable is obtained by using the integral method. In order to verify the simulation results,experiments with different turntables are carried out. The simulation and experimental results show that the size of the MRF chamber width has little effect on the braking torque; the braking torque is the maximum when the turntable has radial grooves on the surface,the case with through-holes is the second,and the case with ring grooves is the minimum. The research results provide references for the structural design of the MRF brake.

References:

[1] 柏宗春,李小宁,陈新. 基于磁流变原理的旋转制动器的研究[C]//第六届全国流体传动与控制学术会议.兰州:中国机械工程学会流体传动与控制分会,2010:28-30.
[2]柏宗春,李小宁. 伺服摆动气缸内置式磁流变阻尼器优化设计[J]. 南京理工大学学报,2012,36(3):534-539.
Bai Zongchun,Li Xiaoning. Optimization design of magnetorheological damper inserted into servo pneumatic rotary actuator[J]. Journal of Nanjing University of Science and Technology,2012,36(3):534-539.
[3]胡明,王炅,范一清. 磁流变液孔口出流数学模型[J]. 上海交通大学学报,2017,51(9):1065-1070.
Hu Ming,Wang Jiong,Fan Yiqing. Mathematical model of orifice outflow for magnetorheological fluid[J]. Journal of Shanghai Jiaotong University,2017,51(9):1065-1070.
[4]吴俊岐,侯保林. 基于FLUENT的磁流变阻尼器阻尼特性分析[J]. 兵器装备工程学报,2017,38(11):142-145.
Wu Junqi,Hou Baolin. Analysis of damping characteristics of magnetorheological(MR)damper based on FLUENT[J]. Journal of Ordnance Equipment Engineering,2017,38(11):142-145.
[5]郑军,张光辉,曹兴进. 传动装置中磁流变液的稳态流动分析[J]. 中南大学学报(自然科学版),2008,39(1):149-154.
Zheng Jun,Zhang Guanghui,Cao Xingjin. Flow analysis of magnetorheological fluid in transmission device in steady state[J]. Journal of Central South University(Natural Science),2008,39(1):149-154.
[6]贺建民,黄金,钟银辉. 磁流变液在圆筒间的黏塑性流动[J]. 功能材料,2006,37(6):992-993.
He Jianmin,Huang Jin,Zhong Yinhui. Viscoplastic flow of the MR fluid between two cylinders[J]. Journal of Functional Materials,2006,37(6):992-993.
[7]刘成晔,蒋科军,衣丰艳. 圆筒式磁流变液制动器内流场数值分析[J]. 系统仿真学报,2011,23(3):628-631.
Liu Chenye,Jiang Kejun,Yi Fengyan. Numerical analysis of inner flow field for cylindrical magnetor-heological brake[J]. Journal of System Simulation,2011,23(3):628-631.
[8]陈庆庆,刘新华. 基于Fluent的盘式磁流变液制动器优化设计[J]. 制造技术与机床,2012(6):79-81.
Chen Qingqing,Liu Xinhua. Optimized design of the disk-shaped magneto-rheological fluid brake based on Fluent[J]. Manufacturing Technology and Machine Tools,2012(6):79-81.
[9]柏宗春. 内嵌磁流变阻尼器摆动伺服气缸的研究[D]. 南京:南京理工大学机械工程学院,2014.
[10]魏齐龙,王超,罗清,等. 磁场作用下磁流变液的流变行为[J]. 磁性材料及器件,2013,44(1):6-9.
Wei Qilong,Wang Chao,Luo Qing,et al. Rheological behaviors of a magnetorheological fluid in magnetic field[J]. Journal of Magnetic Materials and Devices,2013,44(1):6-9.
[11]邹明松. 磁流变阻尼器流体力学分析及动力学仿真[D]. 南京:南京理工大学机械工程学院,2007.
[12]路国平,邓国红. 磁流变液在平行圆盘间的挤压流动分析[J]. 重庆理工大学学报,2011(12):55-59.Lu Guoping,Deng Guohong. Squeeze flow analysis of magnetorheological fluids between two parallel disks[J]. Journal of Chongqing University of Technology,2011(12):55-59.
[13]郑军,曹兴进,张光辉. 传动装置中磁流变液瞬态流动特性的数值计算[J]. 西安交通大学学报,2007,41(9):1053-1057.
Zheng Jun,Cao Xingjin,Zhang Guanghui. Numerical evaluation for transient flow characteristics of magneto-rheological fluid in the transmission devive[J]. Journal of Xi’an Jiaotong University,2007,41(9):1053-1057.
[14]王福军. 计算流体动力学分析[M]. 北京:清华大学出版社,2006.
[15]Bossis G,Khuzir P,Lacis S,et al. Yield behavior of magnetorheological suspensions[J]. Journal of Magnetism and Magnetic Materials,2003(258):456-458.

Memo

Memo:
-
Last Update: 2018-08-30