|Table of Contents|

Effect of discrete scheme on precision of temperature model foroverhead transmission line and improved calculation method(PDF)


Research Field:
Publishing date:


Effect of discrete scheme on precision of temperature model foroverhead transmission line and improved calculation method
Hong Yujuan1Zhang Xudong1Chen Xiong234Wang Wang234
1.School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China; 2.NARI Group Corporation(State Grid Electric Power Research Institute),Nanjing 211106,China; 3.NARI Technology Co Ltd,Nanjing 211106,China; 4.State Key Laboratory of Smart Grid Protection and Control,Nanjing 211106,China
line temperature discrete schemes calculation accuracy
In the IEEE 738,the standard for calculating the current-temperature relationship of bare overhead conductors,the time resolution is often limited by monitoring conalitions. In order to solve the problem of temperature calculation accuracy degradation caused by the lower time resolution,the model is calculated by using the forward Euler method,the fourth order Runge-Kutta method,the backward Euler method and the hiding-trapezium method respectively. Different discrete schemes are discussed on the accuracy for temperature model of overhead transmission lines. A new method for calculating the line temperature model based on the fourth-order Runge-Kutta method and the quadratic function approximation is proposed. Numerical example results show that the larger discrete steps based on the fourth order Runge-Kutta method of model has higher accuracy. The proposed method can improve the fourth order Runge-Kutta method effectively in the temperature calculation accuracy.


[1] 林玉章. 高压架空输电线路载流量和温度计算[J]. 南方电网技术,2012,6(4):23-27.
Lin Yuzhang. The calculation of current carrying capacity and temperature of high voltage overhead lines[J]. Southern Power System Technology,2012,6(4):23-27.
[2]王孟夏,韩学山. 基于电热协调的电网安全校正控制方法[J]. 电力系统自动化,2011,35(12):32-36.
Wang Mengxia,Han Xueshan. Realization of security corrective control considering electro-thermal coordination[J]. Automation of Electric Power Systems,2011,35(12):32-36.v[3]刘刚,阮班义,张鸣. 架空导线动态增容的热路法暂态模型[J]. 电力系统自动化,2012,36(16):58-62.
Liu Gang,Ruan Banyi,Zhang Ming. A transient model for overhead transmission line dynamic rating based on thermal circuit method[J]. Automation of Electric Power Systems,2012,36(16):58-62.
[4]王孔森,盛戈皞,王葵,等. 输电线路动态增容运行风险评估[J]. 电力系统自动化,2011,35(23):11-15.
Wang Kongsen,Sheng Gehao,Wang Kui,et al. Operation risk assessment of a transmission line dynamic line rating system[J]. Automation of Electric Power Systems,2011,35(23):11-15.
[5]IEEE Standard 738-2012. IEEE standard for calculating the current-temperature relationship of bare overhead conductors[S].
[6]IEC/TR 61597-1995. Overhead electrical conductors-calculation methods for stranded bare conductors[S].
[7]柳亚芳,应展烽,张旭东,等. 基于线性回归的架空导线热路模型集总参数辨识[J]. 南京理工大学学报,2015,39(3):335-341.
Liu Yafang,Ying Zhanfeng,Zhang Xudong,et al. Lumped parameter identification of overhead line thermal circuit model based on linear regression[J]. Journal of Nanjing University of Science and Technology,2015,39(3):335-341.
[8]童璇. 基于热路模型和马尔科夫链的碳纤维复合芯导线载流量估计研究[D]. 南京:南京理工大学能源与动力工程学院,2017.
[9]Ying Z F,Chen Y S,Feng K. New DTR estimation method without measured solar and wind data[J]. Journal of Electrical Engineering & Technology,2017,12(2):576-585.
[10]Shaker H,Fotuhi-Firuzabad M,Aminifar F. Fuzzy dynamic thermal rating of transmission lines[J]. IEEE Transactions on Power Delivery,2012,27(4):1885-1892.
[11]雷成华,刘刚,李钦豪. BP神经网络模型用于单芯电缆导体温度的动态计算[J]. 高电压技术,2011,37(1):184-189.
Lei Chenghua,Liu Gang,Li Qinhao. Dynamic calculation of conductor temperature of single-cable using BP neural network[J]. High Voltage Engin-eering,2011,37(1):184-189.
[12]黄新波,孙钦东,张冠军. 输电线路导线及金具温度在线监测系统[J]. 电气应用,2008,27(16):63-67.
Huang Xinbo,Sun Qindong,Zhang Guanjun. An on-line monitoring system of temperature of conductors and fittings in transmission lines[J]. Electrotechnical Application,2008,27(16):63-67.
[13]索尔,吴兆金,王国英,等. 数值分析[M]. 北京:人民邮电出版社,2010:195-298.
[14]Santos J R,Gómez Expósito A,Parre?o Sánchez F. Assessment of conductor thermal models for grid studies[J]. IET Generation,Transmission & Distribution,2007,1(1):155-161.


Last Update: 2018-10-30