|Table of Contents|

Time pattern mining method for intelligent traffic system event(PDF)


Research Field:
Publishing date:


Time pattern mining method for intelligent traffic system event
Huang Tiantian1Yu Jun2Li Qianmu1
1.School of Computer Science and Engineering,Nanjing University of Scienceand Technology,Nanjing 210094,China; 2.Jiangsu Xin Tong Intelligent Traffic Technology Development Co Ltd,Nanjing 210009,China
intelligent transportation system time delay expectation maximization algorithm
In order to improve the solving efficiency of series of traffic problems in intelligent transportation,a time delay model is established to find the distribution of the interlaced delay of the traffic-related events,and the expectation maximization(EM)algorithm is used to mine the time-dependent delay of the relevant event. At the same time,the EM algorithm is optimized to find the delay distribution in a large set of events. Experimental results verify the effectiveness of the proposed method in mining time delay of the intelligent traffic system related events.


[1] 田寅. 城市交通智能感知与传感器网络技术研究[D]. 北京:北京交通大学交通运输学院,2015.
[2]张红,王晓明,曹洁,等. 基于大数据的智能交通体系架构[J]. 兰州理工大学学报,2015,41(2):112-115.
Zhang Hong,Wang Xiaoming,Cao Jie,et al. Intelligent transportation architecture based on large data[J]. Journal of Lanzhou University of Technology,2015,41(2):112-115.
[3]Kit Yan Chan,Tharam S Dillon,Jaipal Singh,et al. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm[J]. IEEE Transactions on Intelligent Transportation System,2012,13(2):644-654.
[4]乔春凯,赵佳文. 基于时序关联规则挖掘的交通拥堵预测研究[J]. 科技创新与应用,2017(1):28-29.
Qiao Chunkai,Zhao Jiawen. Study on traffic congestion prediction based on temporal association rule mining[J]. Science and Technology Innovation and Application,2017(1):28-29.
[5]Li Y,Li B,Tian B,et al. Vehicle detection based on the AND-OR graph for congested traffic conditions[J]. IEEE Transactions on Intelligent Transportation System,2013,14(2):984-993.
[6]Meinshausen N,Bühlmann P. High-dimensional graphs and variable selection with the Lasso[J]. Annals of Statistics,2006,34(3):1436-1462.
[7]Han L,Song G,Cong G,et al. Overlapping decomposition for causal graphical modeling[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,US:ACM,2012:114-122.
[8]Zhou X,Hong H,Xing X,et al. Discovering spatio-temporal dependencies based on time-lag in intelligent transportation data[J]. Neurocomputing,2017,259:76-84.
[9]Kruse R,Steinbrecher M,Moewes C. Temporal pattern mining[C]//International Conference on Signals and Electronic Systems. Wroclaw,Poland:ICSES,2010:3-8.
[10]杨桂元. 中心极限定理及其在统计分析中的应用[J]. 统计与信息论坛,2000(3):13-15.
Yang Guiyuan. Central limit theorem and its application in statistical analysis[J]. Statistics and Information Forum,2000(3):13-15.
[11]生佳根,刘思峰. 一种基于本体的关联规则挖掘方法[J]. 南京理工大学学报,2008,32(4):401-405.
Sheng Jiagen,Liu Sifeng. A method of mining association rules based on ontology[J]. Journal of Nanjing University of Science and Technology,2008,32(4):401-405.
[12]孙大飞,陈志国,刘文举. 基于EM算法的极大似然参数估计探讨[J]. 河南大学学报(自然科学版),2002,32(4):35-41.
Sun Dafei,Chen Zhiguo,Liu Wenju. Study on maximum likelihood parameter estimation based on EM algorithm[J]. Journal of Henan University(Natural Science),2002,32(4):35-41.
[13]Barron A R,Cohen A,Dahmen W,et al. Approximation and learning by greedy algorithms[J]. Annals of Statistics,2008,36(1):64-94.
[14]吴超仲. OpenITS openData[EB/OL]. http://www. openits. cn/openData/index. jhtml,2016-10-12.


Last Update: 2018-10-30