|Table of Contents|

Time pattern mining method for intelligent traffic system event(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2018年05期
Page:
571-
Research Field:
Publishing date:

Info

Title:
Time pattern mining method for intelligent traffic system event
Author(s):
Huang Tiantian1Yu Jun2Li Qianmu1
1.School of Computer Science and Engineering,Nanjing University of Scienceand Technology,Nanjing 210094,China; 2.Jiangsu Xin Tong Intelligent Traffic Technology Development Co Ltd,Nanjing 210009,China
Keywords:
intelligent transportation system time delay expectation maximization algorithm
PACS:
TP301.6
DOI:
10.14177/j.cnki.32-1397n.2018.42.05.010
Abstract:
In order to improve the solving efficiency of series of traffic problems in intelligent transportation,a time delay model is established to find the distribution of the interlaced delay of the traffic-related events,and the expectation maximization(EM)algorithm is used to mine the time-dependent delay of the relevant event. At the same time,the EM algorithm is optimized to find the delay distribution in a large set of events. Experimental results verify the effectiveness of the proposed method in mining time delay of the intelligent traffic system related events.

References:

[1] 田寅. 城市交通智能感知与传感器网络技术研究[D]. 北京:北京交通大学交通运输学院,2015.
[2]张红,王晓明,曹洁,等. 基于大数据的智能交通体系架构[J]. 兰州理工大学学报,2015,41(2):112-115.
Zhang Hong,Wang Xiaoming,Cao Jie,et al. Intelligent transportation architecture based on large data[J]. Journal of Lanzhou University of Technology,2015,41(2):112-115.
[3]Kit Yan Chan,Tharam S Dillon,Jaipal Singh,et al. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm[J]. IEEE Transactions on Intelligent Transportation System,2012,13(2):644-654.
[4]乔春凯,赵佳文. 基于时序关联规则挖掘的交通拥堵预测研究[J]. 科技创新与应用,2017(1):28-29.
Qiao Chunkai,Zhao Jiawen. Study on traffic congestion prediction based on temporal association rule mining[J]. Science and Technology Innovation and Application,2017(1):28-29.
[5]Li Y,Li B,Tian B,et al. Vehicle detection based on the AND-OR graph for congested traffic conditions[J]. IEEE Transactions on Intelligent Transportation System,2013,14(2):984-993.
[6]Meinshausen N,Bühlmann P. High-dimensional graphs and variable selection with the Lasso[J]. Annals of Statistics,2006,34(3):1436-1462.
[7]Han L,Song G,Cong G,et al. Overlapping decomposition for causal graphical modeling[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,US:ACM,2012:114-122.
[8]Zhou X,Hong H,Xing X,et al. Discovering spatio-temporal dependencies based on time-lag in intelligent transportation data[J]. Neurocomputing,2017,259:76-84.
[9]Kruse R,Steinbrecher M,Moewes C. Temporal pattern mining[C]//International Conference on Signals and Electronic Systems. Wroclaw,Poland:ICSES,2010:3-8.
[10]杨桂元. 中心极限定理及其在统计分析中的应用[J]. 统计与信息论坛,2000(3):13-15.
Yang Guiyuan. Central limit theorem and its application in statistical analysis[J]. Statistics and Information Forum,2000(3):13-15.
[11]生佳根,刘思峰. 一种基于本体的关联规则挖掘方法[J]. 南京理工大学学报,2008,32(4):401-405.
Sheng Jiagen,Liu Sifeng. A method of mining association rules based on ontology[J]. Journal of Nanjing University of Science and Technology,2008,32(4):401-405.
[12]孙大飞,陈志国,刘文举. 基于EM算法的极大似然参数估计探讨[J]. 河南大学学报(自然科学版),2002,32(4):35-41.
Sun Dafei,Chen Zhiguo,Liu Wenju. Study on maximum likelihood parameter estimation based on EM algorithm[J]. Journal of Henan University(Natural Science),2002,32(4):35-41.
[13]Barron A R,Cohen A,Dahmen W,et al. Approximation and learning by greedy algorithms[J]. Annals of Statistics,2008,36(1):64-94.
[14]吴超仲. OpenITS openData[EB/OL]. http://www. openits. cn/openData/index. jhtml,2016-10-12.

Memo

Memo:
-
Last Update: 2018-10-30