|Table of Contents|

Combined global sensitivity analysis for stiffnessof automatic loading mechanism(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2019年02期
Page:
135-
Research Field:
Publishing date:

Info

Title:
Combined global sensitivity analysis for stiffnessof automatic loading mechanism
Author(s):
Sun JiaChen GuangsongQian LinfangYin QiangLiu Taisu
School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
automatic loading mechanism global sensitivity analysis elementary effect method polynomial chaos expansion
PACS:
TB114.3
DOI:
10.14177/j.cnki.32-1397n.2019.43.02.002
Abstract:
In order to identify the important parameters and key parameters affecting the stiffness of the automatic loading mechanism,a combined global sensitivity analysis method is proposed here. The important parameters are identified by the quasi-optimized Morris trajectory based the elementary effect method and then these parameters are identified as the design variables. The key parameters are identified by the global sensitivity analysis method based on the polynomial chaos expansion. Two test functions are given to verify the effectiveness of the proposed method. Finally,the 10 important parameters affecting the stiffness of the automatic loading mechanism are extracted from all the 32 parameters,and the 6 key parameters affecting the stiffness are extracted from the 10 important parameters.

References:

[1] 赵森,钱勇. 自行火炮半自动装填机构输弹问题研究[J]. 兵工学报,2005,26(5):592-594.
Zhao Sen,Qian Yong. Ammunition ramming of semi-automatic loading device of the self-propelled gun[J]. Acta Armamentarii,2005,26(5):592-594.
[2]高学星,侯保林,孙华刚. 基于FDA和神经网络的弹药协调器故障诊断[J]. 南京理工大学学报,2015,39(6):711-716.
Gao Xuexing,Hou Baolin,Sun Huagang. Fault diagnosis of shell transfer arm based on FDA and neural network[J]. Journal of Nanjing University of Science and Technology,2015,39(6):711-716.
[3]蒋清山,钱林方,徐亚栋,等. 考虑区间不确定性的某弹丸提升装置参数优化[J]. 兵工学报,2016,36(6):1117-1122.
Jiang Qingshan,Qian Linfang,Xu Yadong,et al. Parameter optimization of a shell elevating device with interval uncertainties[J]. Acta Armamentarii,2016,36(6):1117-1122.
[4]Saltelli A. Global sensitivity analysis:the primer[M]. New York,US:John Wiley,2008.
[5]Blatman G. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[J]. Reliability Engineering & System Safety,2010,95(11):1216-1229.
[6]李皓川,孙志礼,王海. 基于降维可视化技术的结构可靠性灵敏度分析[J]. 兵工学报,2014,35(11):1876-1882.
Li Haochuan,Sun Zhili,Wang Hai. Analysis of structural reliability sensitivity based on dimensionality reduction and visualization technique[J]. Acta Armamentar,2014,35(11):1876-1882.
[7]Ge Q. Combining screening and metamodel-based methods[J]. Reliability Engineering & System Safety,2015,134:334-344.
[8]陈光宋. 弹炮耦合系统动力学及关键参数识别研究[D]. 南京:南京理工大学机械工程学院,2016.
[9]蒋清山,钱林方,邹权. 液压弹射输弹过程分析与参数优化[J]. 振动与冲击,2015,34(15):98-102.
Jiang Qingshan,Qian Linfang,Zou Quan. Analysis of hydraulic ejection ramming and parameter optimization[J]. Journal of Vibration and Shock,2015,34(15):98-102.
[10]蒋清山,钱林方,陈光宋. 基于全局灵敏度分析的某自动装填机构轻量化设计[J]. 振动与冲击,2016,35(6):41-46.
Jiang Qingshan,Qian Linfang,Chen Guangsong. Lightweight design of an automatic loading mechanism based on global sensitivity analysis[J]. Journal of Vibration and Shock,2016,35(6):41-46.
[11]Campolongo F. An effective screening design for sensitivity analysis of large models[J]. Environmental modeling & software,2007,22(10):1509-1518.
[12]Saltelli A. Variance based sensitivity analysis of model output[J]. Computer Physics Communications,2010,181(2):259-270.

Memo

Memo:
-
Last Update: 2019-04-26