|Table of Contents|

Preview tracking control for 2D discrete-time systemdescribed by Roesser model(PDF)


Research Field:
Publishing date:


Preview tracking control for 2D discrete-time systemdescribed by Roesser model
Fan Rong1Wang Weiqun1Yao Juan2
1.School of Science; 2.School of Automation,Nanjing University of Scienceand Technology,Nanjing 210094,China)
preview tracking control augmented error system state feedback linear matrix inequity
In order to improve the tracking level and respond speed of 2D systems,the future information on the reference signal is first introduced into 2D systems to deal with the preview tracking control problem for the discrete 2D Roesser model. Firstly,the augmented error system is constructed by using the difference between the state and steady state value. Then the sufficient asymptotic stability condition for the augmented error system via state feedback is derived by applying the linear matrix inequity(LMI)technique,and the preview controller design is given to realize the tracking purpose of 2D systems. The numerical simulation shows that the increase of previewable future information can significantly improve the tracking performance of the 2D discrete-time system described by the Roesser model.


[1] 李冬梅,胡振坤,胡恒章. 线性离散系统的最优预见控制[J]. 南京理工大学学报,2002,26(3):284-289.
Li Dongmei,Hu Zhenkun,Hu Hengzhang. Optimal preview control of linear discrete systems[J]. Journal of Nanjing University of Science and Technology,2002,26(3):284-289.
[2]Li Li,Liao Fucheng. Design of a preview controller for discrete-time systems based on LMI[J]. Mathematical Problems in Engineering,2015(4):1-12.
[3]吴江. 几类线性随机系统的预见控制[D]. 北京:北京科技大学数理学院,2017.
[4]Li Li,Liao Fucheng. Robust preview control for a class of uncertain discrete-time systems with time-varying delay[J]. ISA Transactions,2018,73:11-21.
[5]王为群,邹云. 2-D奇异系统的稳定性[J]. 南京理工大学学报,2002,26(6):565-569.
Wang Weiqun,Zou Yun. Stability of 2-D singular system with delays[J]. Jouural of Nanjing University of Science and Technology,2002,26(6):565-569.
[6]Yeganefar Nima,Yeganefar Nader,Ghamgui M,et al. Lyapunov theory for 2-D nonlinear Roesser models:application to asymptotic and exponential stability[J]. IEEE Transactions on Automatic Control,2013,58(5):1299-1304.
[7]Bachelier O,Paszke W,Yeganefar N,et al. LMI stability conditions for 2D roesser models[J]. IEEE Transactions on Automatic Control,2016,61(3):766-770.
[8]Nachidi M,Tadeo F,Hmamed A,et al. Static output-feedback controller design for two-dimensional Roesser models[J]. Kybernetika,2001(2):205-221.
[9]Hua Dingli,Wang Weiqun,Yu Weiren,et al. Finite-region stabilization via dynamic output feedback for 2-D Roesser models[J]. Mathematical Methods in the Applied Sciences,2018(1):1-12.
[10]Feng Zhiyong,Xu Li. H static output feedback controller design for two-dimensional discrete systems in Roesser model[C]//IEEE International Symposium on Computer-Aided Control System Design. Yokohama,Japan:IEEE,2010:1790-1794.
[11]张红,刘晓东. 基于观测器的2D T-S模糊离散系统H输出跟踪控制[J]. 三峡大学学报(自然科学版),2014,36(3):91-97.
Zhang Hong,Liu Xiaodong. H output tracking control for discrete-time 2-D T-S fuzzy systems[J]. Journal of China Three Gorges Unversity,2014,36(3):91-97.
[12]刘丛志,王铃燕,刘伟群,等. 2-D系统H输出反馈迭代学习控制器设计[J]. 计算机应用,2016,36(s2):112-115.
Liu Congzhi,Wang Lingyan,Liu Weiqun,et al. Iterative learning controller design of H output feedback for 2-D systems[J]. Journal of Conputer Application,2016,36(s2):112-115.


Last Update: 2019-04-26