|Table of Contents|

PI parameter optimization method for active thermalcontrol of power devices(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2019年06期
Page:
667-676
Research Field:
Publishing date:

Info

Title:
PI parameter optimization method for active thermalcontrol of power devices
Author(s):
Wan MengYing ZhanfengZhang Xudong
School of Energy and Power Engineering,Nanjing University of Science andTechnology,Nanjing 210094,China
Keywords:
power devices active thermal control proportional-integral controller parameter optimization junction temperature control genetic algorithm single phase full bridge circuit dynamic current limiting
PACS:
TM46
DOI:
10.14177/j.cnki.32-1397n.2019.43.06.001
Abstract:
In order to improve the accuracy of junction temperature control,a parameter optimization method for active thermal control of power devices is proposed. An objective function of proportional-integral(PI)parameter optimization is constructed based on the active thermal control principle and the thermal network model of power devices. The objective function is solved by genetic algorithm to obtain the optimal PI parameters. To verify the effectiveness of this method,a single phase full bridge circuit is composed of power MOSFETs,and dynamic current limiting is taken as the means of active thermal control. The active thermal control of power devices is simulated and experimented under different maximum current limits,initial junction temperature and ambient temperature. Results show that the proposed method can improve the accuracy of junction temperature control.

References:

[1] Qian Chen,Gheitaghy A M,Fan Jiajie,et al. Thermal management on IGBT power electronic devices and modules[J]. IEEE Access,2018,6:12868-12884.
[2]何建,谭开洲,徐学良,等. VDMOS过温保护功能的实现[J]. 微电子学,2012,42(3):352-355.
He Jiang,Tan Kaizhou,Xu Xueliang,et al. Realization of over-temperature protection for VDMOS[J]. Microelectronics,2012,42(3):352-355.
[3]Andresen M,Liserre M,Buticchi G,et al. Review of active thermal and lifetime control techniques for power electronic modules[C]//16th European Conference on Power Electronics and Applications. Lappeenranta,Finland:IEEE,2014:1-10.
[4]周雒维,王博,张益,等. 非平稳工况下功率半导体器件结温管理技术综述[J]. 中国电机工程学报,2018,38(8):2394-2407.
Zhou Luowei,Wang Bo,Zhang Yi,et al. Review on junction temperature management of power semiconductor devices under power fluctuation condition[J]. Proceedings of the CSEE,2018,38(8):2394-2407.
[5]黄守道,陈叶宇,刘平,等. 基于频段导向的PWM逆变器主动热管理控制[J]. 电力自动化设备,2017,37(5):34-39.
Huang Shoudao,Chen Yeyu,Liu Ping,et al. Band-oriented active thermal management control of PWM inverter[J]. Electric Power Automation Equipment,2017,37(5):34-39.
[6]Murdock D A,Torres J E R,Connors J J,et al. Active thermal control of power electronic modules[J]. IEEE Transactions on Industry Applications,2006,42(2):552-558.
[7]刘平,张星,黄守道,等. 基于实时结温观测的电动汽车逆变器动态限流策略[J]. 电力自动化设备,2018,38(12):11-15.
Liu Ping,Zhang Xing,Huang Shoudao,et al. Dynamic current limiting strategy of electric vehicle inverters based on real-time junction temperature observation[J]. Electric Power Automation Equipment,2018,38(12):11-15.
[8]Lemmens J,Vanassche P,Driesen J. Optimal control of traction motor drives under electrothermal constraints[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2014,2(2):249-263.
[9]Rajapakse A D,Gole A M,Wilson P L. Electromagnetic transients simulation models for accurate representation of switching losses and thermal performance in power electronic systems[J]. IEEE Transactions on Power Delivery,2005,20(1):319-327.
[10]李辉,刘盛权,李洋,等. 考虑多热源耦合的风电变流器 IGBT 模块结温评估模型[J]. 电力自动化设备,2016,36(2):51-56.
Li Hui,Liu Shengquan,Li Yang,et al. Junction temperature evaluation model for IGBT module of wind-power converter considering multi-thermal coupling[J]. Electric Power Automation Equipment,2016,36(2):51-56.
[11]姚芳,胡洋,李铮,等. 基于结温监测的风电IGBT热安全性和寿命耗损研究[J]. 电工技术学报,2018,33(9):2024-2033.
Yao Fang,Hu Yang,Li Zheng,et al. Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society,2018,33(9):2024-2033.
[12]Henfer A R,Blackburn D L. Simulating the dynamic electro-thermal behavior of power electronic circuits and systems[J]. IEEE Transactions on Power Electronics,1993,8(4):376-385.
[13]Rodriguez J J,Parrilla Z,Velez-Reyes M,et al. Thermal component models for electro-thermal analysis of multichip power modules[C]//Conference Record-IAS Annual Meeting(IEEE Industry Applications Society)1. Pittsburgh,USA:IEEE,2002:234-241.
[14]万萌,应展烽,张伟. 分立型功率MOSFET结温估计的非线性热网络模型和参数辨识方法[J]. 电工技术学报,2019,34(12):2477-2488.Wan Meng,Ying Zhanfeng,Zhang Wei. Nonlinear thermal network model and parameter identification method for junction temperature estimation of discrete power MOSFET[J]. Transactions of China Electrotechnical Society,2019,34(12):2477-2488.
[15]李树江,赵晨,苏锡辉,等. 基于遗传算法优化PID控制器参数的环境测试舱温湿度控制[J]. 南京理工大学学报,2017,41(4):511-518.
Li Shujiang,Zhao Chen,Su Xihui,et al. Temperature and humidity control for environmental test chamber based on genetic algorithm optimized parameters of PID controller[J]. Journal of Nanjing University of Science and Technology,2017,41(4):511-518.
[16]方红庆,陈龙,李训铭. 基于线性与非线性模型的水轮机调速器PID参数优化比较[J]. 中国电机工程学报,2010,30(5):100-106.
Fang Hongqing,Chen Long,Li Xunming. Comparisons of optimal tuning hydro turbine governor PID gains based on linear and nonlinear mathematical models[J]. Proceedings of the CSEE,2010,30(5):100-106.
[17]Chen Zhihuan,Yuan Yanbin,Yuan Xiaohui,et al. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization[J]. ISA Transactions,2015,56:173-187.
[18]林智勇. 带约束集合划分优化问题及其求解[J]. 计算机工程与科学,2005,27(7):98-102.
Lin Zhiyong. The problem of set partitioning optimization with constraints and its solution[J]. Computer Engineering and Science,2005,27(7):98-102.
[19]万萌,应展烽,张旭东,等. 功率器件集总参数热路模型及其参数提取研究[J]. 电工技术学报,2015,30(21):31-38.
Wan Meng,Ying Zhanfeng,Zhang Xudong,et al. Research on the lumped parameter thermal circuit model and the parameter extraction method of power devices[J]. Transactions of China Electrotechnical Society,2015,30(21):31-38.
[20]王雷,王明,邢屹鹏. 基于响应面模型与遗传算法的机床立柱优化[J]. 南京理工大学学报,2018,42(4):453-458.
Wang Lei,Wang Ming,Xing Yipeng. Optimization on machine tool pillar based on response surface model and genetic algorithm[J]. Journal of Nanjing University of Science and Technology,2018,42(4):453-458.
[21]IRF[International Rectifier]. IRFB4410PbF[EB/OL]. https://html.alldatasheet.com/html-pdf/732699/IRF/IRFB4110PBF/58/1/IRFB4110PBF.html,2019-12-08.

Memo

Memo:
-
Last Update: 2019-12-31