[1] Lazo M J,Paiva J,Amaral J T S,et al. An action principle for action-dependent Lagrangians:Toward an action principle to non-conservative systems[J]. Journal of Mathematical Physics,2018,59(3):032902.
[2]Noether E. Invariante variations probleme[J]. Nachrichten von der Gesellschaft der Wissenschaften zu G?ttingen,Mathematisch-Physikalische Klasse,1918,KI(II):235-257.
[3]梅凤翔. 约束力学系统的对称性与守恒量[M]. 北京:北京理工大学出版社,2004.
[4]梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京:科学出版社,1999.
[5]张毅,丁金凤. 基于El-Nabulsi分数阶模型的广义Birkhoff系统Noether对称性研究[J]. 南京理工大学学报,2014,38(3):409-413.
Zhang Yi,Ding Jinfeng. Noether symmetries of generalized Birkhoff systems based on El-Nabulsi fractional model[J]. Journal of Nanjing University of Science and Technology,2014,38(3):409-413.
[6]金世欣,张毅. 相空间中含时滞的非保守力学系统的Noether定理[J]. 中山大学学报(自然科学版),2014,53(4):56-61.
Jin Shixin,Zhang Yi. Noether theorem for nonconservative mechanical system with time delay in phase space[J]. Acta Scientiarum Naturalium Universitatis Sunyateni,2014,53(4):56-61.
[7]傅景礼,付丽萍. 分数阶非完整系统的Noether对称性及其逆问题[J]. 北京大学学报(自然科学版),2016,52(4):643-652.
Fu Jingli,Fu Liping. Noether symmetries and their inverse problems of nonholonomic systems with fractional derivatives[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(4):643-652.
[8]刘艳东,张毅. Caputo导数下分数阶Hamilton系统的Noether准对称性定理[J]. 南京理工大学学报,2018,42(3):120-125.
Liu Yandong,Zhang Yi. Noether quasi-symmetry theorems for fractional Hamilton system in terms of Caputo derivatives[J]. Journal of Nanjing University of Science and Technology,2018,42(3):120-125.
[9]宋传静,张毅. 时间尺度上Lagrange系统对称性摄动与绝热不变量[J]. 南京理工大学学报,2017,41(2):181-185.
Song Chuanjing,Zhang Yi. Perturbation to symmetry and adiabatic invariant for Lagrangian system on time scale[J]. Journal of Nanjing University of Science and Technology,2017,41(2):181-185.
[10]Georgieva B,Guenther R. First Noether-type theorem for the generalized variational principle of Herglotz[J]. Topological Methods in Nonlinear Analysis,2002,20(1):261-273.
[11]Georgieva B,Guenther R,Bodurov T. Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem[J]. Journal of Mathematical Physics,2003,44(9):3911-3927.
[12]Georgieva B,Guenther R. Second Noether-type theorem for the generalized variational principle of Herglotz[J]. Topological Methods in Nonlinear Analysis,2005,26(2):307-314.
[13]张毅. 相空间中非保守系统的Herglotz广义变分原理及其Noether定理[J]. 力学学报,2016,48(6):1382-1389.
Zhang Yi. Generalized variational problem of Herglotz type for non-conservative system in phase space and Noether’s theorems[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(6):1382-1389.
[14]Zhang Yi. Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorems[J]. Acta Mechanica,2017,228(4):1-12.
[15]Zhang Yi,Tian Xue. Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem[J]. Physics Letters A,2019,383(8):691-696.
[16]Georgieva B,Bodurov T. Identities from infinite-dimensional symmetries of Herglotz variational functional[J]. Journal of Mathematical Physics,2013,54(6):062901.
[17]Santos S P S,Martins N,Torres D F M. Noether currents for higher-order variational problems of Herglotz type with time delay[J]. Discrete and Continuous Dynamical Systems(Series S),2018,11(1):91-102.
[18]Donchev V. Variational symmetries,conserved quantities and identities for several equations of mathematical physics[J]. Journal of Mathematical Physics,2014,55(3):032901.
[19]Lazo M J,Paiva J,Amaral J T S,et al. Action principle for action-dependent Lagrangians toward nonconserva-tive gravity:Accelerating universe without dark energy[J]. Physical Review D,2017,95(10):101501.
[20] Almeida R,Malinowska A B. Fractional variational principle of Herglotz[J]. Discrete and Continuous Dynamical Systems(Series B),2014,19(8):2367-2381.
[21]Tian Xue,Zhang Yi. Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of Herglotz variational problem[J]. Communications in Theoretical Physics,2018,70(3):280-288.
[22]Santos S P S,Martins N,Torres D F M. Variational problems of Herglotz type with time delay:Dubois-Reymond condition and Noether’s first theorem[J]. Discrete and Continuous Dynamical Systems,2015,35(9):4593-4610.
[23]Zhang Yi. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type[J]. International Journal of Non-Linear Mechanics,2018,101(4):36-43.
[24]田雪,张毅. 时间尺度上Herglotz广义变分原理及其Noether定理[J]. 力学季刊,2018,39(2):237-248.
Tian Xue,Zhang Yi. Variational principle of Herglotz type and its Noether’s theorem on time scales[J]. Chinese Quarterly of Mechanics,2018,39(2):237-248.
[25]Tian Xue,Zhang Yi. Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales[J]. Acta Mechanica,2018,229(9):3601-3611.
[26]梅凤翔,刘端,罗勇. 高等分析力学[M]. 北京:北京理工大学出版社,1991.