|Table of Contents|

Force and position control for lower limb rehabilitationexoskeleton based on impedance(PDF)


Research Field:
Publishing date:


Force and position control for lower limb rehabilitationexoskeleton based on impedance
Peng Erbao12Chen Changduo2
1.School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430000,China; 2. Henan Polytechnic Institute,Nanyang 473000,China
lower limb rehabilitation exoskeleton force and position control impedance control pneumatic drive humanoid gait
TP242; TP273
In order to improve the comfort and rehabilitation effect of patients with lower limb functional injury,and make up for the conventional position control,a lower limb rehabilitation exoskeleton based on force and position impedance control is designed. Using the flexibility and safety of gas and based on pneumatic proportional technology,it can be controlled real-time,which takes standard gait curve as reference and human-computer interaction moment as constraint. The human-machine dynamic model is established,the experimental platform was built,and the humanoid walking was realized. The experimental results show that the control effect is good,the tracking precision is high,the man-machine interaction torque is effectively adjusted,and the system safety,comfort and stability are further improved.


[1] Dzahir M A M. Recent trends in lower-limb robotic rehabilitation orthosis:Control scheme and strategy for pneumatic muscle actuated gait trainers[J]. Robotics,2014,3(1):120-148.
[2]Jezernik S,Colombo G,Morari M. Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis[J]. IEEE Transactions on Robotics and Automation 2004,20(3):574-582.
[3]Hogan N. Impedance control:An approach to manipulation[C]//American Control Conference. San Diego,USA:IEEE,1984:304-313.
[4]Jamwal P K,Hussain S,Ghayesh M H,et al. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot[J]. IEEE Transactions on Industrial Electronics,2016,63(6):3638-3647.
[5]Ayas M S,Altas I H. Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot[J]. Control Engineering Practice,2017,59:44-54.
[6]李杨,管小荣,徐诚. 基于人体步态的下肢外骨骼动力学仿真研究[J]. 南京理工大学学报,2015,39(3):353-357.
Li Yang,Guan Xiaorong,Xu Cheng. Dynamics simulation of lower extremity exoskeleton based on human gait[J]. Journal of Nanjing University of Science and Technology,2015,39(3):353-357.
[7]Ge S S,Lee T H,Harris C J. Adaptive neural network control of robotic manipulators[M]. London:World Scientific,1998.
[8]丁润泽. 基于阻抗控制的机器人力控制技术研究[D]. 哈尔滨:哈尔滨工业大学航天学院,2018.
[9]韩建海. 工业机器人技术[M]. 武汉:华中科技大学出版社,2019.
[10]张丽香,王晓伟,降爱琴. 二自由度模型驱动PID控制系统参数整定方法及应用[J]. 南京理工大学学报,2014,38(4):476-480.
Zhang Lixiang,Wang Xiaowei,Jiang Aiqin. Parameter tuning method for two degree of freedom model driven PID control and its application[J]. Journal of Nanjing University of Science and Technology,2014,38(4):476-480.
[11]李洪梅,高媛,陈向坚. 基于二型模糊神经网络的不确定混沌系统鲁棒性自适应控制[J]. 南京理工大学学报,2019,43(4):432-438.
Li Hongmei,Gao Yuan,Chen Xiangjian. Interval type Ⅱ fuzzy neural network control based robust adaptive for the synchronization of uncertain chaotic systems[J]. Journal of Nanjing University of Science and Technology,2019,43(4):432-438.
[12]王纪伟,陈刚,汪俊. 基于模糊免疫PID的驾驶机器人车辆路径及速度跟踪控制[J]. 南京理工大学学报,2017,41(6):686-692.
Wang Jiwei,Chen Gang,Wang Jun. Vehicle path and speed tracking control of robotdriver based on fuzzy immune PID[J]. Journal of Nanjing University of Science and Technology,2017,41(6):686-692.
[13]王企远. 步态康复训练机器人助行腿的步态规划与运动控制设计[D]. 上海:上海大学机电工程与自动化学院,2011.


Last Update: 2020-02-29