|Table of Contents|

Cloud service trust evaluation algorithm optimizationbased on multi-level structure model(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2020年01期
Page:
55-60
Research Field:
Publishing date:

Info

Title:
Cloud service trust evaluation algorithm optimizationbased on multi-level structure model
Author(s):
Zhao LiRen Jie
College of Information Engineering,Xinyang Agriculture and Forestry University,Xinyang 464000,China
Keywords:
multi-hierarchical model cloud service trust assessment rough set associated feature quantity
PACS:
TP391
DOI:
10.14177/j.cnki.32-1397n.2020.44.01.009
Abstract:
In order to improve the trust level and recommendation ability of cloud services,it is necessary to optimize and evaluate the trust degree of cloud services,and a cloud service trust evaluation algorithm based on multi-hierarchical structure model is proposed. In the collection of user behavior information features in cloud service platform,the big data model of cloud service trust distribution is established to mine the preference characteristics of cloud service users. According to the acquisition result,a fuzzy information scheduling method is adopted to extract the trust feature quantity of the cloud service,the rough set distribution model of the cloud service trust evaluation is constructed on the basis of the result,and the cloud service trust evaluation and the recommendation are carried out through the large-data multi-level structural analysis method,the optimal clustering and self-adaptive evaluation of the trust degree of cloud service are realized in combination with the fuzzy C-means clustering method. The simulation results show that the multi-level structure of cloud service trust distribution is uniform. The accuracy of cloud service trust evaluation is high,the evaluation accuracy is good,and the user satisfaction is high,which improves the ability of cloud service trust evaluation.

References:

[1] 王佳蕾,郭耀,刘志宏. 基于社交网络信任关系的服务推荐方法[J]. 计算机科学,2018,45(S2):402-408.
Wang Jialei,Guo Yao,Liu Zhihong. Service recommendation method based on social network trust relationships[J]. Computer Science,2018,45(S2):402-408.
[2]刘雪晴. 面向科研社交网络的小同行双向推荐算法[J]. 计算机应用与软件,2018,35(10):171-180.
Liu Xueqing. A reciprocal peer researcher recommendation algorithm for academic social network[J]. Computer Applications and Software,2018,35(10):171-180.
[3]肖云鹏,孙华超,戴天骥,等. 一种基于云模型的社交网络推荐系统评分预测方法[J]. 电子学报,2018,46(7):1762-1767.
Xiao Yunpeng,Sun Huachao,Dai Tianji,et al. A rating prediction method based on cloud model in social recommendation system[J]. Acta Electronica Sinica,2018,46(7):1762-1767.
[4]柳益君,何胜,吴智勤,等. 基于用户社交网络分析的高校图书馆主题多样性阅读推荐[J]. 图书情报工作,2018,62(8):67-73.
Liu Yijun,He Sheng,Wu Zhiqin,et al. Reading recommendation with subject diversity of university libraries based on analysis of user social network[J]. Library and Information Service,2018,62(8):67-73.
[5]彭舰,王屯屯,陈瑜,等. 基于跨平台的在线社交网络用户推荐研究[J]. 通信学报,2018,39(3):147-158.
Peng Jian,Wang Tuntun,Chen Yu,et al. User recommendation based on cross-platform online social networks[J]. Journal on Communications,2018,39(3):147-158.
[6]陈平,王利钢. 基于数据挖掘联合模型的高职学生网络学习行为分析[J]. 牡丹江大学学报,2018,27(5):124-127,131.
Chen Ping,Wang Ligang. Analysis of higher vocational college students’networklearning behavior based on data mining joint model[J]. Journal of Mudanjiang University,2018,27(5):124-127,131.
[7]赵莉. 基于支持向量机的云计算资源负载预测模型[J]. 南京理工大学学报,2018,42(6):687-692.
Zhao Li. Load forecasting model of cloud computing resources based on support vector machine[J]. Journal of Nanjing University of Science and Technology,2018,42(6):687-692.
[8]徐晓霞,姜春茂,黄春梅. 一种基于三支决策的移动云任务节能卸载方法[J]. 南京理工大学学报,2019,43(4):447-454.
Xu Xiaoxia,Jiang Chunmao,Huang Chunmei. A method of energy-aware mobile cloud tasks offloading based on three-way decision[J]. Journal of Nanjing University of Science and Technology,2019,43(4):447-454.
[9]李君茹,牛炳麟,赵莉. 基于双方承诺的云环境服务信任管理机制[J]. 南京理工大学学报,2018,42(2):217-221.
Li Junru,Niu Binglin,Zhao Li. Trust management mechanism of cloud environment service based on two sides commitment[J]. Journal of Nanjing University of Science and Technology,2018,42(2):217-221.
[10]Alyatama A,Alsumait A,Alotaibi M. Continuous memory allocation model for cloud services[J]. Journal of Supercomputing,2018,74(4):1-26.
[11]王晋东,于智勇,张恒巍,等. 云模型属性加权聚类服务推荐信任度算法[J]. 系统仿真学报,2018,30(11):275-289.
Wang Jindong,Yu Zhiyong,Zhang Hengwei,et al. Service recommended trust algorithm based on cloud model attributes weighted clustering[J]. Journal of System Simulation,2018,30(11):275-289.
[12]汤小春,田凯飞,段慧芳. 基于部分异步复制的云服务可靠部署算法研究[J]. 西北工业大学学报,2017,35(6):1054-1058.
Tang Xiaochun,Tian Kaifei,Duan Huifang. A better availability for service deployment based on partial asynchrony in cloud computing environment[J]. Journal of Northwestern Polytechnical University,2017,35(6):1054-1058.

Memo

Memo:
-
Last Update: 2020-02-29