[1] 李世光,孟凡涛,程建军,等. 基于改进量子粒子群算法的船舶配电网重构[J]. 中国科技论文,2018,13(11):1304-1308. Li Shiguang,Meng Fantao,Cheng Jianjun,et al. Ship distribution network reconstruction based on improved quantum particle swarm optimization algorithm[J]. Chinese Science and Technology Paper,2018,13(11):1304-1308. [2]谢源,李琼,陈杰,等. 基于改进的量子粒子群算法的变差函数拟合方法及应用[J]. 成都理工大学学报(自然科学版),2018,45(3):379-385. Xie Yuan,Li Qiong,Chen Jie,et al. Variation function fitting method and application based on improved quantum particle swarm optimization algorithm[J]. Journal of Chengdu University of Technology(Natural Science Edition),2018,45(3):379-385. [3]李盼池,王海英,宋考平,等. 量子势阱粒子群优化算法的改进研究[J]. 物理学报,2012,61(6):19-28. Li Panchi,Wang Haiying,Song Kaoping,et al. Improved particle swarm optimization algorithm for quantum potential wells[J]. Acta Physica Sinica,2012,61(6):19-28. [4]徐珊珊,金玉华,张庆兵. 带全局判据的改进量子粒子群优化算法[J]. 系统工程与电子技术,2018,40(9):2131-2137. Xu Shanshan,Jin Yuhua,Zhang Qingbing. Improved quantum particle swarm optimization algorithm with global criteria[J]. System Engineering and Electronics,2018,40(9):2131-2137. [5]郭蕴华,王晓宗. 基于改进量子粒子群算法的无人机路径规划[J]. 船海工程,2016,45(1):99-102. Guo Yunhua,Wang Xiaozong. Path planning for UAV based on improved quantum particle swarm optimization algorithm[J]. Ship & Ocean Engineering,2016,45(1):99-102. [6]彭广,方洋旺,张磊,等. 一种改进的量子粒子群算法[J]. 火力与指挥控制,2016,41(7):92-96. Peng Guang,Fang Yangwang,Zhang Lei,et al. An improved quantum particle swarm optimization algorithm[J]. Fire and Command Control,2016,41(7):92-96. [7]陈功贵,黄山外,孙智,等. 基于改进量子粒子群算法的电力系统经济调度仿真研究[J]. 实验技术与管理,2017(3):104-107. Chen Gonggui,Huang Shanwai,Sun Zhi,et al. Simulation study on economic scheduling of power system based on improved quantum particle swarm optimization algorithm[J]. Experimental Technology and Management,2017(3):104-107. [8]黄丽,彭道刚,顾立群,等. 基于改进量子粒子群算法负荷优化分配研究[J]. 控制工程,2017,24(7):1402-1408. Huang Li,Peng Daogang,Gu Liqun,et al. Research on load optimization distribution based on improved quantum particle swarm optimization algorithm[J]. Control Engineering,2017,24(7):1402-1408. [9]胡皞,邵永亮,常军. 改进QPSO算法识别结构模态参数[J]. 噪声与振动控制,2017,37(3):82-87. Hu Hao,Shao Yongliang,Chang Jun. Improved QPSO algorithm to identify structural modal parameters[J]. Noise and Vibration Control,2017,37(3):82-87. [10]李建平,宫耀华,卢爱平,等. 改进的粒子群算法及在数值函数优化中应用[J]. 重庆大学学报,2017,40(5):95-103. Li Jianping,Gong Yaohua,Lu Aiping,et al. Application of improved particle swarm optimization to numerical function optimization[J]. Journal of Chongqing University,2017,40(5):95-103. [11]冯仲恺,廖胜利,牛文静,等. 改进量子粒子群算法在水电站群优化调度中的应用[J]. 水科学进展,2015,26(3):413-422. Feng Zhongkai,Liao Shengli,Niu Wenjing,et al. Application of improved quantum particle swarm optimization algorithm in optimal operation of hydropower stations[J]. Advances in Water Science,2015,26(3):413-422. [12]赵莉. 基于改进量子粒子群算法的云计算资源调度[J]. 南京理工大学学报,2016,40(2):223-228. Zhao Li. Cloud computing resource scheduling based on improved quantum particle swarm optimization algorithm[J]. Journal of Nanjing University of Science and Technology,2016,40(2):223-228. [13]芮筱亭. 多体系统传递矩阵法及其应用[M]. 北京:科学出版社,2008. [14]包子阳. 智能优化算法及其MATLAB实例[M]. 北京; 电子工业出版社,2018. [15]Sun Jun,Xu Wenbo,Fang Bin. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[J]. Proceedings of IEEE International Conference on System,2005(4):3049-3054. [16]Sun Jun,Xu Wenbo,Fang Wei. Quantun-behaved particle swarm optimization with a hybrid probability distribution[J]. Pricai Trends in Artificial Intelligence,2006,4099:737-746. [17]常鹏,杨娜,张国培,等. 多分辨率分析和小波能量曲率的框架结构损伤识别[J]. 哈尔滨工业大学学报,2016,48(6):170-176. Chang Peng,Yang Na,Zhang Guopei,et al. Damage identification of frame structures based on multi-resolution analysis and wavelet energy curvature[J]. Journal of Harbin Institute of Technology,2016,48(6):170-176. [18]徐珂. ANSYS建筑结构分析应用[M]. 北京:中国建筑工业出版社,2013.