[1] 鞠平,周孝信,陈维江,等. “智能电网+”研究综述[J]. 电力自动化设备,2018(5):2-11.
Ju Ping,Zhou Xiaoxin,Chen Weijiang,et al. Summary of “Smart Grid+” research[J]. Electric Power Automation Equipment,2018(5):2-11.
[2]韩博闻. 基于Apriori关联算法的配电网运行大数据关联分析模型[J]. 上海电力学院学报,2018(2):20-26.
Han Bowen. Big data association analysis model of distribution network operation and maintenance based on apriori correlation algorithm[J]. Journal of Shanghai University of Electric Power,2018(2):20-26.
[3]刘科研,吴心忠,石琛,等. 基于数据挖掘的配电网故障风险预警[J]. 电力自动化设备,2018,38(5):148-153.
Liu Keyan,Wu Xinzhong,Shi Chen,et al. Fault risk early warning of distribution network based on data mining[J]. Electric Power Automation Equipment,2018,38(5):148-153.
[4]洪翠,付宇泽,郭谋发,等. 改进多分类支持向量机的配电网故障识别方法[J]. 电子测量与仪器学报,2019(1):7-15.
Hong Cui,Fu Yuze,Guo Moufa,et al. Identification method of distribution network faults based on improved multi-classification support vector machine[J]. Journal of Electronic Measurement and Instrument,2019(1):7-15.
[5]张斌,庄池杰,胡军,等. 结合降维技术的电力负荷曲线集成聚类算法[J]. 中国电机工程学报,2015,35(15):3741-3749.
Zhang Bin,Zhuang Chijie,Hu Jun,et al. Ensemble clustering algorithm combined with dimension reduction techniques for power load profiles[J]. Proceedings of the CSEE,2015,35(15):3741-3749.
[6]孙康,李千目,李德强. 基于级联卷积神经网络的人脸检测算法[J]. 南京理工大学学报,2018,42(1):40-47.
Sun Kang,Li Qianmu,Li Deqiang. Face detection algorithm based on cascaded convolutional neural network[J]. Journal of Nanjing University of Science and Technology,2018,42(1):40-47.
[7]王林,董楠. 基于Gabor特征与卷积神经网络的人体轮廓提取[J]. 南京理工大学学报,2018,42(1):89-95.
Wang Lin,Dong Nan. Human silhouette identification based on Gabor featureand convolutional neural network[J]. Journal of Nanjing University of Science and Technology,2018,42(1):89-95.
[8]徐萍,吴超,胡峰俊,等. 基于迁移学习的个性化循环神经网络语言模型[J]. 南京理工大学学报,2018,42(4):401-409.
Xu Ping,Wu Chao,Hu Fengjun,et al. Personalized recurrent neural network language modelbased on transfer learning[J]. Journal of Nanjing University of Science and Technology,2018,42(4):401-409.
[9]朱元振,刘玉田. 基于深度学习直流闭锁判断的高风险连锁故障快速搜索[J]. 电力系统自动化,2019,43(22):59-67.
Zhu Yuanzhen,Liu Yutian. Fast search for high-risk cascading failures based on deep learning DC blocking judgment[J]. Automation of Electric Power Systems,2019,43(22):59-67.
[10]孙宇嫣,蔡泽祥,郭采珊,等. 基于深度学习的智能变电站通信网络故障诊断与定位方法[J]. 电网技术,2019,43(12):4306-4314.
Sun Yuyan,Cai Zexiang,Guo Caishan,et al. Fault diagnosis and positioning for communication network in intelligent substation based on deep learning[J]. Power System Technology,2019,43(12):4306-4314.
[11]Xu S. Bayesian Na?ve Bayes classifiers to text classification[J]. Journal of Information Science,2018,44(1):48-59.
[12]You Ronghui,Dai Suyang,Zhang Zihan,et al. AttentionXML:extreme multi-label text classification with multi-label attention based recurrent neural networks[J]. Computing Research Repository,2018,18(1): 17-27.
[13]Chen J,Hu Y,Liu J,et al. Deep short text classification with knowledge powered attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii,USA:IOA Press,2019,33:6252-6259.
[14]Devlin J,Chang M,Lee K,et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics,Human Language Technologies. Minneapolis,USA:IOA Press,2019:4171-4186.
[15]Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. California,USA:IOA Press,2017:5998-6008.
[16]Mikolov T,Chen K,Corrado G,et al. Efficient estimation of word representations in vector space[J]. Computer Science,2013,32(2):123-129.
[17]Joulin A,Grave E,Bojanowski P,et al. Bag of tricks for efficient text classification[J]. Computing Research Repository,2016,7(1):17-59.
[18]Zhang M,Ai X,Hu Y. Chinese text classification system on regulatory information based on SVM[J]. IOP Conference Series:Earth and Environmental Science,2019,252(2):22-28.
[19]Anderson J. Fully convolutional networks for text classification[J]. Computing Research Repository,2019,15(1):11-17.
[20]Gers F. Long short-term memory in recurrent neural networks[D]. Swiss:Swiss Artificial Intelligence Laboratory,2001.
[21]Pennington J,Socher R,Manning C D. Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha,Qatar:IOA Press,2014:1532-1543.