[1] Qin S J. Statistical process monitoring:basics and beyond[J]. Journal of Chemometrics,2003,17(8/9):480-502.
[2]Ge Z Q,Song Z H,Gao F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research,2013,52(10):3543-3562.
[3]Qin S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control,2012,36(2):220-234.
[4]杜海莲,苗诗瑜,杜文霞,等. 改进主元分析方法及数据重构在工业系统中的故障诊断研究[J]. 南京理工大学学报,2019,43(1):72-77,85.
Du Hailian,Miao Shiyu,Du Wenxia,et al. Research on fault diagnosis of industrial systems based on improved principal component analysis method and data reconstruction[J]. Journal of Nanjing University of Science and Technology,2019,43(1):72-77,85.
[5]Liu Y,Liang Y,Gao Z,et al. Online flooding supervision in packed towers:an integrated data-driven statistical monitoring method[J]. Chemical Engineering & Technology,2018,41(3):436-446.
[6]Nguyen V H,Golinval J C. Fault detection based on kernel principal component analysis[J]. Journal of Central South University,2010,32(11):3683-3691.
[7]Ge Z Q,Song Z H. Process monitoring based on independent component analysis-principal component analysis(ICA-PCA)and similarity factors[J]. Industrial & Engineering Chemistry Research,2007,46(7):2054-2063.
[8]Zhou D,Li G,Qin S J. Total projection to latent structures for process monitoring[J]. Aiche Journal,2010,56(1):168-178.
[9]郑皓,熊伟丽. 基于多阶段ICA-SVDD的间歇过程故障监测[J]. 南京理工大学学报,2018,42(2):195-203.
Zheng Hao,Xiong Weili. Fault monitoring of intermittent process based on multi-stage ICA-SVDD[J]. Journal of Nanjing University of Science and Technology,2018,42(2):195-203.
[10]Cherry G A,Qin S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing,2006,19(2):159-172.
[11]Multi-block methods in multivariate process control[J]. Journal of Chemometrics,2008,22(11/12):580-586.
[12]Macgregor J F. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE J,1994,40(5):826-838.
[13]Westerhuis J A,Kourti T,MacGregor J F. Analysis of multiblock and hierarchical PCA and PLS models[J]. Journal of Chemometrics:A Journal of the Chemometrics Society,1998,12(5):301-321.
[14]Jiang Q C,Yan X F,Huang B. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference[J]. IEEE Transactions on Industrial Electronics,2015,63(1):377-386.
[15]Huang J,Yan X. Dynamic process fault detection and diagnosis based on dynamic principal component analysis,dynamic independent component analysis and Bayesian inference[J]. Chemometrics and Intelligent Laboratory Systems,2015,148:115-127.
[16]顾炳斌,熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报,2019,70(2):316-329.
Gu Bingbin,Xiong Weili. PCA fault diagnosis method based on multi-block information extraction[J]. CIESC Journal,2019,70(2):316-329.
[17]赵帅,宋冰,侍洪波. 基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报,2018,69(3):962-973.
Zhao Shuai,Song Bing,Shi Hongbo. Quality-related fault detection based on weighted mutual information principal component analysis algorithm[J]. CIESC Journal,2018,69(3):962-973.
[18]Li W. Mutual information functions versus correlation functions[J]. Journal of Statistical Physics,1990,60(5/6):823-837.
[19]Jiang Q,Yan X. Plant-wide process monitoring based on mutual information-multiblock principal component analysis[J]. ISA Transactions,2014,53(5):1516-1527.
[20]Ge Z Q,Chen J. Plant-wide industrial process monitoring:a distributed modeling framework[J]. IEEE Transactions on Industrial Informatics,2017,12(1):310-321.
[21]Shen Y,Ding S X,Haghani A,et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control,2012,22(9):1567-1581.
[22]Russell E L,Chiang L H,Braatz R D. Tennessee Eastman Process[C]//Fault Detection and Diagnosis in Industrial Systems. London:Springer,2001:103-112.