|Table of Contents|

Simulation research of temperature field of water coolingroller for hydrophilic coated aluminium foil(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2020年06期
Page:
733-738
Research Field:
Publishing date:

Info

Title:
Simulation research of temperature field of water coolingroller for hydrophilic coated aluminium foil
Author(s):
Chang Lingling1Liu Yue1Li Huirong1Guan Xiaorong2
1.School of Computer Science,Shaanxi Institute of Technology,Xi’an 710300,China; 2.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
hydrophilic coated aluminium foil water cooling rollers temperature field air layer cooling speed
PACS:
TG162.6; O368
DOI:
10.14177/j.cnki.32-1397n.2020.44.06.013
Abstract:
To solve the crease problem in the production of the hydrophilic aluminum foil caused by fast cooling process,the air layer structure is proposed to slow down the cooling speed. The Fluent software is employed to numerically calculate the temperature fields of different roller structures. The effects of the new structure as well as the reasonable air thickness are researched through the comparison of temperature contours and quantitative data. The varying law of the foil temperature with roller parameters is also studied. The numerical simulations show that the cooling speed of foil temperature slows down owing to the air layer; as the air thickness increasing,the temperature gradient tends smaller,and the air layer with thickness of 4~6 cm is advisable to satisfy the foil cooling requirements; the foil temperature is proportional to roller diameter as well as wrap angle,and is inversely proportional to the rotation speed.

References:

[1] 孟维柱,田旭. 亲水涂层铝箔生产线[J]. 机械设计与制造,2000(5):62-63.
Meng Weizhu,Tian Xu. Technology and equipment of hydrophilic aluminum foil coating[J]. Machinery Design and Manufacture,2000(5):62-63.
[2]杨楠. 辊冷技术及其冷却能力计算[J]. 工业炉,2017(5):53-55.
Yan Nan. Roller-quench technology and its calculation method of cooling capacity[J]. Industrial Furnace,2017(5):53-55.
[3]王少飞,屈子路,窦爱民,等. 多辊轧机在冷轧高强钢生产中的应用[J]. 中国冶金,2019,29(6):81-84.
Wang Shaofei,Qu Zilu,Dou Aimin,et al. Application of muti-roll mill in cold rolled high strength steel production[J]. China Metallurgy,2019,29(6):81-84.
[4]王宇新,李晓杰,王小红,等. 复合轧辊的爆炸焊接技术研制[J]. 南京理工大学学报,2019,43(5):556-562.
Wang Yuxin,Li Xiaojie,Wang Xiaohong,et al. Study on manufacturing of compound roller by using of explosive welding technology[J]. Journal of Nanjing University of Science and Technology,2019,43(5):556-562.
[5]董永刚,宋剑锋,朱衡,等. 冷轧支承辊辊套内外表面应力分布及其影响因素研究[J]. 塑性工程学报,2018,25(3):274-281.
Dong Yonggang,Song Jianfeng,Zhu Heng,et al. Influence factors and distribution of stress on inner and outer surfaces of roll sleeve of back-up roll for cold mill[J]. Journal of Plasticity Engineering,2018,25(3):274-281.
[6]Pan Cunhai,Luo Sa. Effects of cooling water velocity on temperature field of hot billet conveyor roller[C]//2016 5th International Conference on Energy and Environmental Protection(ICEEP 2016). Shenzhen,China:ICEEP,2016.
[7]袁建波,兰箭. 端面无支撑芯辊模态及其动力响应有限元分析[J]. 锻压技术,2017,42(5):152-158.
Yuan Jianbo,Lan Jian. Finite element analysis on modal and dynamic response of unsupported mandrel on end face[J]. Forging and Stamping Technology,2017,42(5):152-158.
[8]王兴东,黄毫军,李友荣,等. 沉没辊装置液固耦合数值模拟及振动实验[J]. 工程科学学报,2016,38(12):1778-1783.
Wang Xingdong,Huang Haojun,Li Yourong,et al. Numerical simulation and vibration test on the liquid-solid coupling system of a sink roll device[J]. Chinese Journal of Engineering,2016,38(12):1778-1783.
[9]梅瑞斌,杜永霞,蔡般,等. 不同加热条件下AZ31镁合金带材轧制过程的数值模拟[J]. 热加工工艺,2017,46(1):113-116.
Mei Ruibin,Du Yongxia,Cai Ban,et al. Numerical simulation of rolling process of AZ31 Mg alloy strip under different heating conditions[J]. Hot Working Technology,2017,46(1):113-116.
[10]李会荣,马书元. LT1350图层线水冷辊结构优化设计[J]. 机械工程与自动化,2016(1):129,131.
Li Huirong,Ma Shuyuan. LT1350 coated wire water cooling roller structure optimization design[J]. Mechanical Engineering and Automation,2016(1):129,131.
[11]陶文铨. 数值传热学[M]. 第2版. 西安:西安交通大学出版社,2001.
[12]Versteeg H K,Malalasekera W. An introduction to computational fluid dynamics:The finite volume method[EB/OL]. https://www. researchgate. net/profile/W_Malalasekera/publication/44491110_An_introduction_to_computational_fluid_dynamics_the_finite_volume_method_H_K_Versteeg_and_W_Malalasekera/links/0deec5190993e535a2000000/An-introduction-to-computational-fluid-dynamics-the-finite-volume-method-H-K-Versteeg-and-W-Malalasekera. pdf,2020-11-22.
[13]肖亚庆. 铝加工技术实用手册[M]. 北京:冶金工业出版社,2005.

Memo

Memo:
-
Last Update: 2020-12-30