|Table of Contents|

Massive image retrieval based on Hadoop distributed platform(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年04期
Page:
442-
Research Field:
Publishing date:

Info

Title:
Massive image retrieval based on Hadoop distributed platform
Author(s):
Wang QianTan YongjieQin JieChai ZhengyiYe Haiqin
School of Computer Science and Technology,Zhoukou Normal University,Zhoukou 466001,China
Keywords:
massive image image retrieval cloud computing distributed platform image feature
PACS:
TP391
DOI:
10.14177/j.cnki.32-1397n.2017.41.04.007
Abstract:
In order to speed up the image retrieval,a massive image retrieval system based on Hadoop distributed platform is proposed.Firstly,the features of image are extracted,and the features of the image library are divided into several sub feature databases; secondly,image retrieval results are obtained according to the matching results by Hadoop distributed platform; finally,the speed and efficiency of image retrieval are analyzed by simulation experiments.The results show that the proposed system can greatly improve the speed of image retrieval,can get better image retrieval efficiency compared with contrast models and has higher practical value.

References:

[1] Hong C,Yu J,Tao D.Image-based 3d human pose recovery by multi-view locality sensitive sparse retrieval[J].EEE Trans Industrial Electronics,2015,62(6):3742-3751.
[2]顾晓东,杨诚.新的颜色相似度衡量方法在图像检索中的应用[J].仪器仪表学报,2014,35(10):2286-2293.
Gu Xiaodong,Yang Chen.Application of new color similarity measurement method in image retrieval[J].Chinese Journal of Scientific Instrument,2014,35(10):2286-2293.
[3]Guo Jingming,Heri P,Su Huaisheng.Image indexing using the color and bit pattern feature fusion[J].Journal of Visual Communication and Image Repre-sentation,2013,24(8):1360-1379.
[4]Zeng Shan,Huang Rui,Wang Haibing,et al.Image retrieval using spatiograms of colors quantized by Gaussian mixture models[J].Neurocomputing,2016,17(8):673-684.
[5]闫允一,姜帅,郭宝龙.结合稳定兴趣点和Gabor小波的图像检索[J].西安电子科技大学学报(自然科学版),2014,41(5):118-123.
Yan Yunyi,Jiang Shuai,Guo Baolong.Image retrieval using stable interest points and Gabor wavelet[J].Journal of Xidian University,2014,41(5):118-123.
[6]刘胜蓝,冯林,孙木鑫,等.分组排序多特征融合的图像检索方法[J].计算机研究与发展,2017,54(5):1067-1076.
Liu Shenglan,Feng Lin,Sun Muxin,et al.Group and rank fusion for accurate image retrieval[J].Journal of Computer Research and Development,2017,54(5):1067-1076.
[7]徐守晶,韩立新,曾晓勤.基于改进型SDA 的自然图像分类与检索[J].模式识别与人工智能,2014,27(8):750-757.
Xu Shoujing,Han Lixin,Zeng Xiaoqin.Natural images classification and retrieval based on improved SDA[J].PTA & AT,2014,27(8):750-757.
[8]张玉兵,宋威.基于局部对角色差描述符的图像检索方法[J].计算机工程,2016,42(12):248-251.
Zhang Yubing,Song Wei.Image retrieval method based on local diagonal color difference descriptor[J].Computer Engineering,2016,42(12):248-251.
[9]朱正礼,赵春霞,侯迎坤,等.基于多特征的旋转不变纹理图像检索[J].南京理工大学学报,2012,36(3):375-380.
Zhu Zhengli,Zhao Chunxia,Hou Yingkun,et al.Rotation invariant texture image retrieval based on multi-feature[J].Journal of Nanjing University of Science and Technology,2012,36(3):375-380.
[10]谭台哲,向云鹏.Hadoop平台下海量图像处理实现[J].计算机工程与设计,2017,38(4):976-980.
Tan Taizhe,Xiang Yunpen.Large-scale image processing implementation under Hadoop platform[J].Computer Engineering and Design,2017,38(4):976-980.
[11]王珊,王会举,周烜.架构大数据:挑战、现状与展望[J].计算机学报,2011,34(10):1742-1752.
Wang Shan,Wang Huiju,Zhou Xuan.Architecting big data:challenges,studies and forecasts[J].Journal of Computer,,2011,34(10):1742-1752.
[12]廖亮,虞宏霄.基于Hadoop的医疗大数据分析系统的研究与设计[J].计算机系统应用,2017,26(4):49-53.
Liao Liang,Yu Hongxiao.Research and design of medical mega data analysis system based on Hadoop[J].Computer Systems & Applications,2017,26(4):49-53.
[13]谭雄飞,钱建良,陈亚.搭建基于Hadoop的云计算平台[J].江苏第二师范学院学报,2016,32(12):32-36.
Tan Xiongfei,Qian Jianliang,Chen Ya.Build a cloud computing platform based on Hadoop[J].Journal of Jiangsu Second Normal University,2016,32(12):32-36.

Memo

Memo:
-
Last Update: 2017-08-31