|Table of Contents|

Stacking order planning method based on adaptivesimulated annealing genetic algorithm(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年04期
Page:
486-
Research Field:
Publishing date:

Info

Title:
Stacking order planning method based on adaptivesimulated annealing genetic algorithm
Author(s):
Xu MingjiLi ShengChen QingweiGuo JianWu Yifei
School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China
Keywords:
rectangular coordinate palletizing robots stacking order decisive variables mathematical models adaptive simulated annealing genetic algorithm
PACS:
TP18; TP301.6
DOI:
10.14177/j.cnki.32-1397n.2017.41.04.014
Abstract:
In order to optimize the robot stacking sequence of rectangular axes and save stacking time,avoid influences like different kinds of material boxes’ random stacking and random position choice on piling work,this paper builds up a mathematical model involving material boxes choice and stacking position distribution and designs a two-level heuristic algorithm based on an adaptively simulated annealing genetic algorithm to solve the problems.We take unstacking sequence,stacking sequence,and stacking area as decisive variables and aim to make the shortest route of stacking and unstacking process.This paper makes simultaneous optimization on the model and gets a set of optimal stacking sequence according to the simulation of 104 material boxes.The simulation results show that,compared with a set of random stacking sequence,material boxes’ choice and stacking position distribution can effectively cut down working route and working time,which means that the model and algorithm are feasible and effective.

References:

[1] 钟麦英,汤兵勇.基于电子商务环境的自动化立体仓库系统研究[J].系统工程与电子技术,2001,23(6):102-104.
Zhong Maiying,Tang Bingyong.Automated warehouse system based on electronic commerce environment[J].Systems Engineering and Electronics,2001,23(6):102-104.
[2]李晓刚,刘晋浩.码垛机器人的研究与应用现状、问题及对策[J].包装工程,2011,32(3):96-102.
Li Xiaogang,Liu Jinhao.Research and application situation,problems and solutions of palletizing robots[J].Packing Engineering,2011,32(3):96-102.
[3]武文杰.基于视觉处理和遗传算法的Tripod机器人最优轨迹控制[D].上海:东华大学,2015.
[4]Liu J,Wang Z,Chen Z,et al.Hierarchical Markov decision based path planning for palletizing robot[J].Telkomnika Indonesian Journal of Electrical Engineering,2014,12(3):1842-1849.
[5]Scheurer C,Zimmermann U E.Path planning method for palletizing tasks using workspace cell decomposition[C]//IEEE International Conference on Robotics and Automation.Xplore:IEEE,2011:1-4.
[6]冯倩.九州通医药物流中心货位分配及拣选作业优化研究[D].北京:北京交通大学,2014.
[7]徐敏,陈州尧,李俊蒂.基于模拟退火算法的码垛机器人码垛路径规划[J].包装工程,2015(15):95-98.
Xu Min,Chen Zhouyao,Li Jundi.Path planning of palletizing robot stacking based on simulated annealing algorithm[J].Packing Engineering,2015(15):95-98.
[8]姚佳茵.CG项目中进度优化算法的研究与实现[D].南京:南京理工大学自动化学院,2008.
[9]Xu Mingji,Li Sheng,Guo Jian.Optimization of multiple traveling salesman problem based on simulated annealing genetic algorithm[C]//13th Global Congress on Manufacturing and Management,GCMM2016.Zhengzhou,China.EDP Sciences,2017:241-248.
[10]Yang X S.Nature-inspired metaheuristic algorithms[M].[S.l.]:Luniver Press,2010.
[11]Benvenuto N,Marchesi M,Uncini A.Applications of simulated annealing for the design of special digital filters[J].IEEE Transactions on Signal Processing,1992,40(2):323-332.
[12]罗亚中,唐国金,田蕾.基于模拟退火算法的最优控制问题全局优化[J].南京理工大学学报,2005,29(2):144-148.
Luo Yazhong,Tang Guojin,Tian Lei.Global optimization of optimal control problems based on simulated annealing[J].Journal of Nanjing University of Science and Technology,2005,29(2):144-148.
[13]罗立宏,冯开平,叶家玮.基于摇瓶策略求解二维不规则件排样问题[J].南京理工大学学报,2015,39(2):194-201.
Luo Lihong,Feng Kaiping,Ye Jiawei.2-D irregular polygon nesting with shaking bottle strategy[J].Journal of Nanjing University of Science and Technology,2015,39(2):194-201.
[14]刘好德,杨晓光.基于改进遗传算法的公交线网优化设计研究[J].计算机工程与应用,2007,43(8):10-14.
Liu Haode,Yang Xiaoguang.Research on transit routes network design based on improved genetic algorithm[J].Computer Engineering and Application,2007,43(8):10-14.

Memo

Memo:
-
Last Update: 2017-08-31