|Table of Contents|

Online soft sensor method based on GPR with test andcompensation for singular point(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2017年04期
Page:
503-
Research Field:
Publishing date:

Info

Title:
Online soft sensor method based on GPR with test andcompensation for singular point
Author(s):
Zhong Huaibing1Xiong Weili12
1.Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education; 2.School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China
Keywords:
Gaussian process regression auxiliary model singular point pauta criterion soft sensor
PACS:
TP391.9
DOI:
10.14177/j.cnki.32-1397n.2017.41.04.016
Abstract:
To handle the problem of the singular query sample which is encountered in the application of soft sensor for the practical industrial processes,an online soft sensor method considering the test and compensation for the singular point is proposed in this paper.A soft sensor model can be built based on the Gaussian process regression(GPR)approach using the training dataset.The pauta criterion is improved to test the new query samples with higher degree of accuracy.If the new query sample is determined as a singular point,an auxiliary model based method is provided to repair the singular point.The renewed query sample is predicted.Otherwise,the GPR soft sensor model can be used to estimate the new query sample directly.It can ensure the validity of the new query sample point.The effectiveness of the proposed method is verified through the simulation experiment on a real sulfur recovery unit treatment process.

References:

[1] Souza F,Rui A,Mendes J.Review of soft sensor methods for regression applications[J]. Chemometrics & Intelligent Laboratory Systems,2016,152:69-79.
[2]Kadlec P,Gabrys B,Strandt S.Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering,2009,33(4):795-814.
[3]曹鹏飞,罗雄麟.化工过程软测量建模方法研究进展[J]. 化工学报,2013,64(3):788-800.
Cao Pengfei,Luo Xionglin.Modeling of soft sensor for chemical process[J]. Journal of Chemical Industry and Engineering,2013,64(3):788-800.
[4]Wang D,Liu J,Srinivasan R.Data-driven soft sensor approach for quality prediction in a refining process[C]//International Conference on Industrial Informatics.Osaka,Japan:IEEE,2010:230-235.
[5]俞金寿.软测量技术及其应用[J]. 自动化仪表,2008,29(1):1-7.
Yu Jinshou.Soft sensing technology and its application[J]. Process Automation Instrumentation,2008,29(1):1-7.
[6]于霜,刘国海,梅从立,等. 生物发酵过程中VIP优化神经网络逆系统的软测量方法[J]. 南京理工大学学报,2015,39(4):447-452.
Yu Shuang,Liu Guohai,Mei Congli,et al. VIP optimal neural network inverse system soft sensing method in bio-fermentation process[J]. Journal of Nanjing University of Science and Technology,2015,39(04):447-452.
[7]Kaneko H,Funatsu K.Ensemble locally-weighted partial least squares as a just-in-time modeling method[J]. Aiche Journal,2015,62(3):717-725.
[8]Lv Y,Yang T,Liu J.An adaptive least squares support vector machine model with a novel update for NOx emission prediction[J]. Chemometrics & Intelligent Laboratory Systems,2015,145:103-113.
[9]熊志化,张继承,邵惠鹤.基于高斯过程的软测量建模[J]. 系统仿真学报,2005,17(4):793-794,800.
Xiong Zhihua,Zhang Jicheng,Shao Huihe.GP-based soft sensor modeling[J]. Journal of System Simulation,2005,17(4):793-794,800.
[10]Xiong W L,Zhang W,Xu B G,et al. JITL based MWGPR soft sensor for multi-mode process with dual-updating strategy[J]. Computers & Chemical Engineering,2016,90:260-267.
[11]Liu Y,Gao Z.Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian process regression models[J]. Journal of Applied Polymer Science,2015,132(6):41432(1-9).
[12]Chen J,Jie Y,Zhang Y.Multivariate video analysis and gaussian process regression model based soft sensor for online estimation and prediction of nickel pellet size distributions[J]. Computers & Chemical Engineering,2014,64(1):13-23.
[13]孙茂伟,杨慧中.基于改进仿射传播聚类的多模型软测量建模及应用[J]. 南京理工大学学报,2016,40(2):204-211.Sun Maowei,Yang Huizhong.Multi-model soft-sensor modeling based on improved affinity propagation clustering algorithm and application[J]. Journal of Nanjing University of Science and Technology,2016,40(2):204-211.
[14]Ahmed F,Cho H J,Jin K K,et al. A real-time model based on least squares support vector machines and output bias update for the prediction of NOx emission from coal-fired power plant[J]. Korean Journal of Chemical Engineering,2015,32(6):1029-1036.
[15]姚熊亮,陈海龙,赵新,等. 基于拉依达准则的舰载设备抗冲击薄弱环节判定[J]. 中国舰船研究,2007,2(5):10-14.
Yao Xiongliang,Chen Hailong,Zhao Xin,et al. Weak link determination of anti-shock performance of shipboard equipments based on pauta criterio[J]. Chinese Journal of Ship Research,2007,2(5):10-14.
[16]郑峰,王睿,宦克为,等. 粳米近红外光谱模型中基于拉依达准则的异常值剔除方法[J]. 光谱学与光谱分析,2012,32(10):133-134.
Zheng Feng,Wang Rui,Huan Kewei,et al. Eliminating abnormal values in keng-rice NIRS modeling based on pauTa criterion[J]. Spectroscopy and Spectral Analysis,2012,32(10):133-134.
[17]江羡珍,马国栋,简金宝.Wolfe线搜索下一个新的全局收敛共轭梯度法[J]. 工程数学学报,2011,28(6):779-786.
Jiang Xianzhen,Ma Guodong,Jian Jinbao.A new globally convergent conjugate gradient method with wolfe line search[J]. Chinese Journal of Engineering Mathematics,2011,28(6):779-786.
[18]Jin H,Chen X,Wang L,et al.Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research,2015,54(30),7320-7345.
[19]Liu Y,Chen J.Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes[J]. Journal of Process Control,2013,23(6):793-804.
[20]熊伟丽,张伟,徐保国.一种基于EGMM的高斯过程回归软测量建模[J]. 信息与控制,2016,45(1):14-19.
Xiong Weili,Zhang Wei,Xu Baoguo.A soft sensor modeling method based on EGMM using gaussian process regression[J]. Information and Control,2016,45(1):14-19.
[21]Fortuna L G,Graziani S,Rizzo A,et al. Soft sensors for monitoring and control of industrial processes[M]. Berlin:Springer-Verlag,2007.

Memo

Memo:
-
Last Update: 2017-08-31