|Table of Contents|

Research status of automotive active suspension technology(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2019年04期
Page:
518-526
Research Field:
Publishing date:

Info

Title:
Research status of automotive active suspension technology
Author(s):
Lai FeiHu Bo
College of Vehicle Engineering,Chongqing University of Technology,Chongqing 400054,China; Key Laboratory of Advanced Manufacturing Technology for Automobile Parts of Ministryof Education,Chongqing 4000454,China
Keywords:
vehicles active suspension control method actuators
PACS:
U461.4
DOI:
10.14177/j.cnki.32-1397n.2019.43.04.020
Abstract:
In this paper,two key elements of active suspension technology,namely control algorithm and actuator,are reviewed and analyzed in detail. Different kinds of control algorithms are not isolated from each other and can be combined to improve the suspension system and vehicle performance to a greater extent. The research of active suspension actuator has gradually shifted from the traditional air/hydraulic unit to the electromagnetic unit. Through the review and analysis of the above two aspects,it provides reference for active suspension designers and developers.

References:

[1] Hrovat D. Influence of unsprung weight on vehicle ride quality[J]. Journal of Sound and Vibration,1988,124(3):497-516.
[2]Hrovat D. Survey of advanced suspension developments and related optimal control applications[J]. Automatica,1997,33(10):1781-1817.
[3]Tseng H E,Hrovat D. State of the art survey:active and semi-active suspension control[J]. Vehicle System Dynamics,2015,53(7):1034-1062.
[4]Levitt J A,Zorka N G. The influence of tire damping in quarter car active suspension models[J]. Transactions of the ASME,1991,113:134-137.
[5]Turkay S,Akcay H. Effect of tire damping on the ride performance potential of active suspension systems[C]//SICE Annual Conference. Takamatsu,Japan:IEEE,2007:1209-1216.
[6]Karnopp D. How significant are transfer function relations and invariant points for a quarter car suspension model?[J]. Vehicle System Dynamics,2009,47(4):457-464.
[7]桑楠,魏民祥. 车辆主动前轮转向与主动悬架的自抗扰控制方法[J]. 南京理工大学学报,2017,41(2):165-172.
Sang Nan,Wei Minxiang. Active disturbance rejection control method of active front wheel steering and active suspension system of vehicle[J]. Journal of Nanjing University of Science and Technology,2017,41(2):165-172.
[8]陈鑫,兰凤崇,陈吉清,等. 微型电动汽车悬架系统设计与平顺性分析[J]. 重庆理工大学学报(自然科学),2018,32(8):24-31.
Chen Xin,Lan Fengchong,Chen Jiqing,et al. Suspension system design and ride analysis of miniature electric vehicle[J]. Journal of Chongqing University of Technology(Natural Science),2018,32(8):24-31.
[9]陈双,宗长富,张立军,等. 主动悬架平顺性和侧倾姿态综合控制策略[J]. 吉林大学学报(工学版),2011,41(S2):59-64.
Chen Shuang,Zong Changfu,Zhang Lijun,et al. Research on integrated control strategy of ride and roll attitude via active suspension[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(S2):59-64.
[10]王超,金智林,张甲乐. 大客车侧翻稳定性分析及防侧翻鲁棒控制[J]. 重庆理工大学学报(自然科学),2017,31(10):12-19.
Wang Chao,Jin Zhilin,Zhang Jiale. Analysis of roll stability and robust control of rollover prevention for a bus[J]. Journal of Chongqing University of Technology(Natural Science),2017,31(10):12-19.
[11]张亮修,杨家颖,吴光强. 考虑侧倾的半主动悬架与电子稳定控制系统集成控制[J]. 同济大学学报(自然科学版),2016,44(3):402-410.
Zhang Liangxiu,Yang Jiaying,Wu Guangqiang. Integrated control based on semi-active suspension and electronic stability control system considering active roll control[J]. Journal of Tongji University(Natural Science),2016,44(3):402-410.
[12]李胜琴,谭丽军. 基于垂向载荷转移率的微型客车侧倾敏感性研究[J]. 重庆理工大学学报(自然科学),2017,31(11):9-15.
Li Shengqing,Tan Lijun. Study of light vehicle rollover tendency based on vertical-load transfer rate[J]. Journal of Chongqing University of Technology(Natural Science),2017,31(11):9-15.
[13]张永辉,姜高松,张耀虎,等. 应用无迹卡尔曼滤波算法的车辆侧倾稳定性控制[J]. 重庆理工大学学报(自然科学),2017,31(7):40-47.
Zhang Yonghui,Jiang Gaosong,Zhang Yaohu,et al. Vehicle roll stability control base on UKF[J]. Journal of Chongqing University of Technology(Natural Science),2017,31(7):40-47.
[14]Louam N,Wilson D A,Sharp R S. Optimal control of a vehicle suspension incorporating the time delay between front and rear wheel inputs[J]. Vehicle System Dynamics,1988,17:317-336.
[15]Langlois R G,Anderson R J. Preview control algorithms for the active suspension of an off-road vehicle[J]. Vehicle System Dynamics,1995,24:65-97.
[16]Kashani R,Kiriczi S. Robust stability analysis of LQG-controlled active suspension with model uncertainty using structured singular value and method[J]. Vehicle System Dynamics,1992,21:361-384.
[17]Sammier D,Sename O,Dugard L. Skyhook and H control of semi-active suspensions:Some practical aspects[J]. Vehicle System Dynamics,2003,39(4):279-308.
[18]Karnopp D,Margolis D. Adaptive suspension concepts for road vehicles[J]. Vehicle System Dynamics,1984,13:145-160.
[19]Hac A. Adaptive control of vehicle suspension[J]. Vehicle System Dynamics,1987,16:57-74.
[20]Ramsbottom M,Crolla D A. Simulation of an adaptive controller for a limited-bandwidth active suspension[J]. Int J of Vehicle Design,1999,21(4/5):355-371.
[21]Priyandoko G,Mailah M,Jamaluddin H. Vehicle active suspension system using skyhook adaptive neuro active force control[J]. Mechanical Systems and Signal Processing,2009,23:855-868.
[22]Gordon T J. An integrated strategy for the control of a full vehicle active suspension system[J]. Vehicle System Dynamics Supplement,1996,25:229-242.
[23]Kuo Yipin,Hseng Tzuu. GA-based fuzzy PI/PD controller for automotive active suspension system[J]. IEEE Transactions on Industrial Electronics,1999,46(6):1051-1056.
[24]Yoshimura T,Watanabe K. Active suspension of a full car model using fuzzy reasoning based on single input rule modules with dynamic absorbers[J]. Int J of Vehicle Design,2003,31(1):22-40.
[25]Sharkawy A B. Fuzzy and adaptive fuzzy control for the automobiles’active suspension system[J]. Vehicle system Dynamics,2005,43(11):795-806.
[26]Yagiz N,Sakman L E. Fuzzy logic control of a full vehicle without suspension gap degeneration[J]. Int J of Vehicle Design,2006,42(1/2):198-212.
[27]Mantaras D A,Luque P. Ride comfort performance of different active suspension systems[J]. Int J of Vehicle Design,2006,40(1/2/3):106-125.
[28]李洪兴. Fuzzy控制的本质与一类高精度Fuzzy控制器的设计[J]. 控制理论与应用,1997,14(6):868-872.
Li Hongxing. The essence of fuzzy control and a kind of fine fuzzy controller[J]. Control Theory and Applications,1997,14(6):868-872.
[29]韩忠旭,吕秀红. 模糊控制与状态反馈控制的内在联系[J]. 控制工程,2007,14(4):383-386.
Han Zhongxu,Lu Xiuhong. Essential relation between fuzzy controller and state feedback control[J]. Control Engineering of China,2007,14(4):383-386.
[30]江洪,王子豪,孔亮. 半主动空气悬架的神经模糊控制[J]. 重庆理工大学学报(自然科学),2017,31(3):1-11.
Jiang Hong,Wang Zihao,Kong Liang. Neural-fuzzy control applied in adjustable volume air suspension with additional air chambers[J]. Journal of Chongqing University of Technology(Natural Science),2017,31(3):1-11.
[31]王健,祖广浩. 磁流变半主动悬架的史密斯预估-LQG时滞补偿控制方法[J]. 重庆理工大学学报(自然科学),2017,31(8):65-72.
Wang Jian,Zu Guanghao. Smith predictor-LQG control for time delay compensation of magneto-rheological semi-active suspension[J]. Journal of Chongqing University of Technology(Natural Science),2017,31(8):65-72.
[32]王健,蔡宇萌. 主动悬架的滑模控制指数趋近率参数优化[J]. 重庆理工大学学报(自然科学),2017,31(9):15-21.
Wang Jian,Cai Yumeng. Parameter optimization of exponent approaching sliding mode control method for active suspension[J]. Journal of Chongqing University of Technology(Natural Science),2017,31(9):15-21.
[33]马克,米林,谭伟,等. 主动悬架非脆弱H控制器设计[J]. 重庆理工大学学报(自然科学),2017,31(12):15-21.
Ma Ke,Mi Lin,Tan Wei,et al. Design of non-fragile H controller for active suspension[J]. Journal of Chongqing University of Technology(Natural Science),2017,31(12):15-21.
[34]Hirose M,Matsushige S,Buma S,et al. Toyota electronic modulated air suspension system for the 1986 soarer[J]. IEEE Transactions on industrial electronics,1988,35(2):193-200.
[35]Lijima T,Akatsu Y,Takahashi K,et al. Development of a hydraulic active suspension[J]. SAE Paper,1993,No.931971:1-12.
[36]Hoogterp F B,Eiler M K,Mackie W J. Active suspension in the automotive industry and the military[J]. SAE Paper,1996,No.961037:1-6.
[37]Cytrynski S,Neerpasch U,Bellmann R,et al. The active suspension of the new mercedes-benz GLE[J]. ATZ Worldwide,2018,120(12):42-45.
[38]Jablonowski C,Schimmel C,Underberg V. The chassis of the all-new AUDI A8[C]//8th International Munich Chassis Symposium 2017. Munich,Germany:Springer,2017:7-26.
[39]Kawamoto Y,Suda Y,Inoue H,et al. Modeling of electromagnetic damper for automobile suspension[J]. Journal of System Design and Dynamics,2007,1(3):524-535.
[40]曹民,刘为,喻凡. 车辆主动悬架用电机作动器的研制[J]. 机械工程学报,2008,44(11):224-228.
Cao Min,Liu Wei,Yu Fan. Development on electromotor actuator for active suspension of vehicle[J]. Journal of Mechanical Engineering,2008,44(11):224-228.
[41]Mirzaei S,Saghaiannejad S M,Tahani V,et al. Electromagnetic shock absorber[C]//Electric Machines and Drives Conference. Massachusetts,USA:IEEE,2001:760-764.
[42]Mirzaei S. A flexible electromagnetic damper[C]//Electric Machine & Drives Conference. Antaly,Turkey:IEEE,2017:959-962.
[43]Stribrsky A,Hyniova K,Honcu J,et al. Energy recuperation in automotive active suspension systems with linear electric motor[C]//2007 Mediterranean Conference on Control and Automation. Athens,Greece:IEEE,2007:1-5.
[44]Martins I,Esteves M,Pina da Silva F,et al. Electromagnetic hybrid active-passive vehicle suspension system[C]//49th Vehicular Technology Conference. Texas,USA:IEEE,1999:2273-2277.
[45]Martins I,Esteves J,Marques G D,et al. Permanent-magnets linear actuators applicability in automobile active suspensions[J]. IEEE Transactions on Vehicular Technology,2006,55(1):86-94.
[46]Paulides J J H,Encica L,Lomonova E A,et al. Design considerations for a semi-active electromagnetic suspension system[J]. IEEE Transactions on Magnetics,2006,42(10):3446-3448.
[47]Gysen B L J,Paulides J J H,Janssen J L G,et al. Active electromagnetic suspension system for improved vehicle dynamics[C]//2008 IEEE Vehicle Power and Propulsion Conference. Heilongjiang,China:IEEE,2008:596-601.
[48]Gysen B L J,Janssen J L G,Paulides J J H,et al. Design aspects of an active electromagnetic suspension system for automotive applications[J]. IEEE Transactions on Industry Applications,2009,45(5):1589-1597.
[49]Lee S,Kim Won-jong. Active suspension control with direct-drive tubular linear brushless permanent-magnet motor[C]//2009 American Control Conference. Mo,USA:AACC,2009:5498-5503.
[50]来飞. 基于电磁作动器的车辆主动悬架研究[D]. 重庆:重庆大学,2010.
[51]Jones W D. Easy ride:Bose Corp uses speaker technology to give cars adaptive suspension[J]. Spectrum IEEE,2005,42(5):12-14.
[52]邵凯,汪若尘,孟祥鹏,等. 轮毂驱动电动车的电磁混合悬架控制研究[J]. 重庆理工大学学报(自然科学),2018,32(6):26-33.
Shao Kai,Wang Ruochen,Meng Xiangpeng,et al. Research on the control of electromagnetic hybrid suspension based on hub motored electric vehicle[J]. Journal of Chongqing University of Technology(Natural Science),2018,32(6):26-33.

Memo

Memo:
-
Last Update: 2019-09-30