|Table of Contents|

Research on architecture and function of gridoperation risk control visualization system(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2020年01期
Page:
87-93
Research Field:
Publishing date:

Info

Title:
Research on architecture and function of gridoperation risk control visualization system
Author(s):
Lu Dan1Zhang Zhongqing2Yu Xiaopeng1Li Penglei3Mi Chuanmin3Xu Jie4
1.Economic and Technological Research Institute,State Grid Henan Electric Power Company,Zhengzhou 450052,China; 2.State Grid Henan Electric Power Company,Zhengzhou 450052,China; 3.College of Economics and Management,Nanjing University of Aeronauticsand Astronautics,Nanjing 210016,China; 4.Wuxi Power Supply Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Wuxi 214000,China)
Keywords:
power grid operation risk control visualization system system architecture system function
PACS:
TM73; TP311.52
DOI:
10.14177/j.cnki.32-1397n.2020.44.01.014
Abstract:
In order to improve the scientific and intelligent level of power grid operation risk management and control,this paper studies the application of visualization technology in power grid operation risk. In this paper,digital perception technology,three-dimensional real-time modeling,real-time rendering technology and other methods are used to study and design the power grid operation risk management and control visualization system. The system is divided into two parts:the upper application system and the lower support platform. The system architecture consists of five layers:data support layer,network communication layer,dynamic editing layer,model library support layer and application system layer. The system function modules include large screen visualization,risk pre-control scenario display,augmented reality interactive hot spot,3D engine dynamic editing and user management. The system can realize multi-dimensional visualization of power grid operation and risk pre-control scenario display,and provide decision support for power grid operation risk management and control.

References:

[1] 鞠平,周孝信,陈维江,等. “智能电网+”研究综述[J]. 电力自动化设备,2018,38(5):2-11.
Ju Ping,Zhou Xiaoxin,Chen Weijiang,et al. “Smart Grid Plus”research overview[J]. Electric Power Automation Equipment,2018,38(5):2-11.
[2]辛培哲,蔡声霞,邹国辉,等. 未来智能电网发展模式与技术路线初探[J]. 电力系统及其自动化学报,2019,31(2):89-94.
Xin Peizhe,Cai Shengxia,Zou Guohui,et al. Preliminary exploration of development mode and technical route for smart grid in the future[J]. Proceedings of the CSU-EPSA,2019,31(2):89-94.
[3]苟竞,朱觅,杨新婷,等. 基于3D技术智能电网管理系统设计[J]. 现代电子技术,2018,41(8):136-138,143.
Gou Jing,Zhu Mi,Yang Xinting,et al. Design of smart grid management system based on 3D technology[J]. Modern Electronics Technique,2018,41(8):136-138,143.
[4]邹鑫,路建明,贺鹏程,等. 智能电网调度可视化系统的设计与实现[J]. 电源技术,2018,42(4):585-587.
Zou Xin,Lu Jianming,He Pengcheng,et al. Design and implementation of smart grid dispatching visualization system[J]. Chinese Journal of Power Sources,2018,42(4):585-587.
[5]王建波,吴耀昊,刘文颖. 基于OpenGL的电力系统预警可视化技术实现[J]. 中国电力,2014,47(8):123-128,134.
Wang Jianbo,Wu Yaohao,Liu Wenying,et al. Implementation of OpenGL-based visualization techniques for safety warning of power system[J]. Electric Power,2014,47(8):123-128,134.
[6]汤涌,王英涛,田芳,等. 大电网安全分析、预警及控制系统的研发[J]. 电网技术,2012,36(7):1-11.
Tang Yong,Wang Yingtao,Tian Fang,et al. Research and development of stability analysis,early-warning and control system for huge power grids[J]. Power System Technology,2012,36(7):1-11.
[7]鄢斌,陈宾,杨春麟,等. 浅谈大数据管理在基层供电企业的应用与发展[J]. 电力大数据,2018,21(1):32-34.
Yan Bin,Chen Bin,Yang Chunlin,et al. Talking about the application and development of big data management in grassroots power supply enterprises[J]. Power System and Big Data,2018,21(1):32-34.
[8]张亚迪,王红杰,周泓,等. 基于三维GIS平台的电网数据资产可视化系统设计及其应用研究[J]. 电测与仪表,2018,55(7):41-46.
Zhang Yadi,Wang Hongjie,Zhou Hong,et al. The design and application research of visualization system on data assets in power grid system based on 3D GIS platform[J]. Electrical Measurement & Instrumentation,2018,55(7):41-46.
[9]陆璐. 智能交通大数据采集技术研究[J]. 西部交通科技,2018(10):196-198.
Lu Lu. Research on intelligent traffic big data collection technology[J]. Western China Communications Science & Technology,2018(10):196-198.
[10]姚富光,钟先信,周靖超. 粒计算:一种大数据融合智能建模新方法[J]. 南京理工大学学报,2018,42(4):503-510.
Yao Fuguang,Zhong Xianxin,Zhou Jingchao. Granular computing:a new method of intelligent modeling for big data fusion[J]. Journal of Nanjing University of Science and Technology,2018,42(4):503-510.
[11]倪震,李千目,郭雅娟. 面向电力大数据日志分析平台的异常监测集成预测算法[J]. 南京理工大学学报,2017,41(5):634-645.
Ni Zhen,Li Qianmu,Guo Yajuan. Ensemble forecasting algorithm for anomaly detection on electric-power big data log analysis platform[J]. Journal of Nanjing University of Science and Technology,2017,41(5):634-645.
[12]蔺薛菲. 虚拟现实三维场景建模与人机交互应用技术研究[J]. 艺术与设计(理论),2017,2(4):100-102.
Lin Xuefei. Research on 3D scene modeling and interaction design for VR applications[J]. Art and Design,2017,2(4):100-102.
[13]成董浩,浑宝炬,靳凯. 增强现实技术在矿井通风系统中的应用前景分析[J]. 工矿自动化,2018,44(8):10-14.
Cheng Donghao,Hun Baoju,Jin Kai. Application prospect analysis of augmented reality technology in mine ventilation system[J]. Industry and Mine Automation,2018,44(8):10-14.
[14]范俊君,田丰,杜一,等. 智能时代人机交互的一些思考[J]. 中国科学:信息科学,2018,48(4):361-375.
Fan Junjun,Tian Feng,Du Yi,et al. Thoughts on human-computer interaction in the age of artificial intelligence[J]. Scientia Sinica(Informationis),2018,48(4):361-375.
[15]张辉,王盼,肖军浩,等. 一种基于三维建图和虚拟现实的人机交互系统[J]. 控制与决策,2018,33(11):1975-1982.
Zhang Hui,Wang Pan,Xiao Junhao,et al. A human-robot interaction system based on 3D mapping and virtual reality[J]. Control and Decision,2018,33(11):1975-1982.
[16]毕硕本,张国建,侯荣涛,等. 三维建模技术及实现方法对比研究[J]. 武汉理工大学学报,2010,32(16):26-30,83.
Bi Shuoben,Zhang Guojian,Hou Rongtao,et al. Comparing research on 3D modeling technology & its implement methods[J]. Journal of Wuhan University of Technology,2010,32(16):26-30,83.
[17]胡莹. 三维建模流程的优化和简化[J]. 湖南师范大学自然科学学报,2014,37(2):90-94.
Hu Ying. Optimization and simplification of 3D modeling process[J]. Journal of Natural Science of Hunan Normal University,2014,37(2):90-94.

Memo

Memo:
-
Last Update: 2020-02-29