|Table of Contents|

Event-triggered optimal control for a class of polynomial systems(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2020年04期
Page:
424-430
Research Field:
Publishing date:

Info

Title:
Event-triggered optimal control for a class of polynomial systems
Author(s):
Zhu GuiLou Xuyang
School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China
Keywords:
polynomial system event-triggered control sum of squares optimal control
PACS:
TP13
DOI:
10.14177/j.cnki.32-1397n.2020.44.04.006
Abstract:
This paper is concerned with the optimal control problem of a class of input affine polynomial systems under the event-triggered control. Firstly,based on the state-dependent model and Hamiltonian-Jacobi inequality,the optimal control problem of the original system is transformed into solving a state-dependent linear matrix inequality problem.Secondly,based on the Lyapunov function and event-triggered control strategy,a set of feasible solutions for the problem are obtained using the sum-of-squares algorithm and the control law is obtained. Finally,numerical simulations verify the validity of the presented results.

References:

[1] Ichihara H. Optimal control for polynomial systems using matrix sum of squares relaxations[J]. IEEE Transactions on Automatic Control,2009,54(5):1048-1053.
[2]Lu W M,Doyle J C. H control of nonlinear systems:a convex characterization[J]. IEEE Transactions on Automatic Control,1995,40(9):1668-1675.
[3]Sasaki S,Uchida K. A convex characterization of analysis and synthesis for nonlinear systems via extended quadratic Lyapunov function[C]//Proceedings of the American Control Conference. New Mexico,USA:IEEE,1997:411-415.
[4]Tronfi A. Bi-quadratic stability of uncertain nonlinearsystems[C]//Proc of IFAC Symposium on Robust Control Design. Prague,Czech Republic:IFAC,2000.
[5]肖小庆. 线性切换系统:事件触发控制、滤波与广义动态分析[D]. 南京:南京理工大学,2017.
[6]Jennawasin T,Banjerdpongchai D. Design of state feedback control for polynomial systems with quadraticperformance criterion and control input constraints[J]. Systems Control Letters,2018,117:53-59.
[7]Vidyasagar M. Nonlinear systems analysis[M]. Philadelphia,USA:SIAM,2002.
[8]Anderson B D O,Moore J B. Optimal control:linearquadratic methods[M]. Chelmsford,MA,USA:Courier Corporation,2007.
[9]杨珺,孙秋野,杨东升. 基于多项式模型的混沌系统平方和算法脉冲控制[J]. 物理学报,2012,61(20):159-163.
Yang Jun,Sun Qiuye,Yang Dongsheng. Sum of square based impulsive control for chaotic system based on polynomial model[J]. Acta Physica Sinica,2012,61(20):159-163.
[10]黄文超,孙洪飞,曾建平.一类多项式非线性系统鲁棒H控制[J]. 控制理论与应用,2012,29(12):1587-1593.
Huang Wenchao,Sun Hongfei,Zeng Jianpin. Robust H control for a class of polynomial nonlinear systems[J]. Control Theory & Applications,2012,29(12):1587-1593.
[11]Reznick B. Some concrete aspects of hilbert’s 17thproblem[M]. Contemporary Mathematics. Providence:American Mathematical Society,2000:251-272.
[12]Laurent E G. Advances in linear matrix inequalitymethods in control[M]. Philadelphia,USA:Society for Industrial and Applied Mathematics,2000.
[13]Prajna S,Papachristodoulou A,Parrilo P A. SOSTOOLS:sum of squares optimization toolbox for MATLAB user’s guide[J]. Control and Dynamical Systems,2004,120(4):68-137.
[14]李洪梅,高媛,陈向坚. 基于二型模糊神经网络的不确定混沌系统鲁棒性自适应控制[J]. 南京理工大学学报,2019,43(4):432-438.
Li Hongmei,Gao Yuan,Chen Xiangjian. Interval type Ⅱ fuzzy neural network control based robust adaptive for the synchronization of uncertain chaotic systems[J]. Journal of Nanjing University of Science and Technology,2019,43(4):432-438.
[15]Li P,Cao J. Stabilisation and synchronisation of chaotic systems via hybrid control[J]. IET Control Theory and Applications,2007,1(3):795-801.

Memo

Memo:
-
Last Update: 2020-08-30