[1]施容华,郑寿炳.某些矩阵的道路多项式[J].南京理工大学学报(自然科学版),1996,(02):82-86.
 Shi Ronghua Zheng Shoubing.The Path polynomials Evaluated at Some Matrices[J].Journal of Nanjing University of Science and Technology,1996,(02):82-86.
点击复制

某些矩阵的道路多项式()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
1996年02期
页码:
82-86
栏目:
出版日期:
1996-04-30

文章信息/Info

Title:
The Path polynomials Evaluated at Some Matrices
作者:
施容华郑寿炳
( 南京理工大学成人教育学院, 南京210094)  ( 南京市教育学院数学系, 南京210008)
Author(s):
Shi Ronghua Zheng Shoubing ①
School of Adult Education, NUST, Nanjing 210094)
关键词:
矩阵( 数学) 特征多项式 连通图 树( 数学)
Keywords:
mat rix es ( mathemat ics ) characterist ic polynomial connected graph t rees ( mathemat ics)
分类号:
O151.21
摘要:
Pk(λ)表示上、下对角线元素为1,其余位置元素是0的k阶方阵的特征多项式,k≥1。如果Pk(A)≥0,k=1,2,…,A是n阶方阵,则说A是道路正矩阵。当图的邻接矩阵是道路正矩阵时,称这个图是道路正图。该文对任何k≥0,分别给出了图D、E、F的邻接矩阵的道路多项式的表达式。这些工作是进一步研究不可约(0,1)对称矩阵的道路多项式的基础。
Abstract:
For any po sit ive integer k ≥ 1, the paper denoted by Pk ( K) the char acteristic polynomial of the t ridiag onal matr ix w ith 1ps on the super -and subdiago nals and zeres elsew here. The n×n square mat rix A is said to be path-posit iv e if Pk ( A ) ≥ 0 for k= 1, 2, 3, ? A graph is said to path-po sit iv e if and only if the adjacency matrix of the g raph is path-posit ive. This paper has derived the str ucture formulas of path-po lynomials evaluated at the adjacency matr ices of gr aphs D , E and F , respect iv ely . T his w ork serves as the basis for further invest ig at ing the behavior of P k( A ) ev aluated at arbit rary unreduced ( 0, 1) symmet ric mat rices.

参考文献/References:

1 Beezer R A. On the polynomial of a path. Linear Alg ebra Appl, 1984, 63: 221~225
2 Cv etkov ic D M, Doo b M, Sachs H. Spect ra o f gr aphs. New Yor k: Academ ic, 1979
3 Lo vasz La slo . Combinato rial pr oblems and ex ercises, New Yo rk : Nor th Ho lland, 1979
4 Bapat R B, I al A K. Path-positiv e g ra phs. Linear Algebr a and I ts Applicdtio ns, 1991, 149:125~149
5 Big gs N. Algebr aic gr aph theor y. Cambr idge : Cambridg e Univer sity Pr ess, 1974

相似文献/References:

[1]徐慧玲,邹云.2-D奇异系统特征多项式与剩余多项式的区域配置[J].南京理工大学学报(自然科学版),2004,(02):132.
 XU Hui-ling,ZOU Yun.Characteristic Polynomial and Residual Polynomial Region Assignment for 2-D Singular Systems[J].Journal of Nanjing University of Science and Technology,2004,(02):132.
[2]徐慧玲,邹云.使用PID控制器的2-D奇异系统特征多项式配置[J].南京理工大学学报(自然科学版),2004,(05):449.
 XU Hui-ling,ZOU Yun.Characteristic Polynomial Assignment of 2-D Singular Systems Using PID Controllers[J].Journal of Nanjing University of Science and Technology,2004,(02):449.
[3]施容华.树 Hn 的道路多项式[J].南京理工大学学报(自然科学版),1997,(01):77.
 Shi Ronghua.Path polynomials of Trees H n[J].Journal of Nanjing University of Science and Technology,1997,(02):77.
[4]施容华,李为善.圈C_n的道路多项式[J].南京理工大学学报(自然科学版),1994,(05):46.
 Shi Ronghua.Path-polynomials Evaluted at Cycles C_n.[J].Journal of Nanjing University of Science and Technology,1994,(02):46.
[5]张新波.m序列的移位线性组合[J].南京理工大学学报(自然科学版),1979,(04):20.

备注/Memo

备注/Memo:
国家自然科学基金资助课题
施容华 男 50 岁 教授
更新日期/Last Update: 2013-04-11