[1]李跃华,沈庆宏,高敦堂,等.小波神经网络的毫米波雷达目标一维距离像识别[J].南京理工大学学报(自然科学版),2002,(01):20-23.
 LiYuehua ShenQinghong GaoDuntang LiXingguo.The Target Profile Identification of Step Frequency MMW Radar Based on Wavelet Neural Network[J].Journal of Nanjing University of Science and Technology,2002,(01):20-23.
点击复制

小波神经网络的毫米波雷达目标一维距离像识别()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2002年01期
页码:
20-23
栏目:
出版日期:
2002-02-28

文章信息/Info

Title:
The Target Profile Identification of Step Frequency MMW Radar Based on Wavelet Neural Network
作者:
李跃华沈庆宏高敦堂李兴国
南京大学电子科学与工程系, 南京210093
Author(s):
LiYuehua ShenQinghong GaoDuntang LiXingguo ①
Department of Electronic Science and Technology, Nanjing University, Nanjing 210093)
关键词:
信号处理 雷达目标 图像处理 神经网络 小波变换 识别
Keywords:
signal processing radar targ ets image processing neural network w avelet transform recognit ion
分类号:
TN957.52
摘要:
将小波变换和反向传播神经网络理论结合 ,设计一种小波神经网络结构。由于小波变换在时间和频率空间所具有良好的定位特性 ,使小波神经网络可对输入输出数据进行多分辨的学习训练。介绍神经网络的数学框架和该网络的学习算法。根据毫米波频率步进雷达目标一维距离像所给出的信息 ,将所提出的小波神经网络用于 3种实际雷达目标的识别。实验结果表明 ,小波神经网络收敛速度快、识别率高。
Abstract:
By integrating w avelet t ransform w ith feed forw ard neural netw ork, a new adapt ive w avelet funct ion neural netw ork is proposed. The good localizat ion characteristics of w avelet funct ions in both time and f requency space allow hierarchical mult-i resolution learning of input-output data mapping . The wavelet shapes are adaptively computed to minimize an energy function for a specific applicat ion of radar targets. T he mathemat ical frame of the neural network is int roduced and error back propag at ion algorithm is used. The procedure of using w avelet neural netw ork for identif icat ion is described in detail. Based on the target specif ic informat ion offered by the range prof iles of step frequency MMW radar target s, the w avelet neural network is applied to recognition of three kinds of pract ical radar target s. Experiment results indicate that the w avelet neural netw ork has faster convergence speed and hig her correct recognit ion rate.

参考文献/References:

1 李跃华, 李兴国.MUSIC 法用于频率步进毫米波雷达目标回波信号分析.电子测量与仪器学报, 1999, 13( 2) : 1~ 5
2 崔锦泰. 小波分析导论. 西安: 西安交通大学版社, 1995
3 Giles C L. Dynamics recurrent neural netwo rks. Theor y and application. IEEE Trans Neur al Network,1996, 5( 2) : 153~ 156
4 Mallat S. A theory for mut iresolution signal decomposition: t he wavelet repr esentation. IEEE Trans PAMI, 1989, 11( 7) : 674~ 684
5 Suz H H. Neural netw ork adaptive wavelets for signal r epresentation and classification. Optical Engineering , 1992, 31( 9) : 1 907~ 1 919

相似文献/References:

[1]陈志仁,顾 红.基于注水原理的雷达目标多分类器集成算法[J].南京理工大学学报(自然科学版),2018,42(03):380.[doi:10.14177/j.cnki.32-1397n.2018.42.03.019]
 Chen Zhiren,Gu Hong.Radar target multi-classifier integration algorithmbased on water-filling theory[J].Journal of Nanjing University of Science and Technology,2018,42(01):380.[doi:10.14177/j.cnki.32-1397n.2018.42.03.019]
[2]成志峰,宋耀良,是湘全.基于高阶WVD的雷达运动目标回波信号处理[J].南京理工大学学报(自然科学版),1999,(02):45.
 Cheng Zhifeng Song Yaoliang Shi Xiangquan.The Signal Processing of Radar Moving Targets Using Polynomial Wigner ville Distribution[J].Journal of Nanjing University of Science and Technology,1999,(01):45.

备注/Memo

备注/Memo:
李跃华 男 42 岁 副教授
更新日期/Last Update: 2002-02-28