[1]李纯莲,王希诚,赵金城.基于浮点数编码的信息熵控制多种群遗传算法[J].南京理工大学学报(自然科学版),2004,(05):453-456.
 LI Chun-lian,WANG Xi-cheng,ZHAO Jin-cheng.Multi-population Genetic Algorithm Controlled by Information Entropy Based on Floating-point Coding[J].Journal of Nanjing University of Science and Technology,2004,(05):453-456.
点击复制

基于浮点数编码的信息熵控制多种群遗传算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2004年05期
页码:
453-456
栏目:
出版日期:
2004-10-30

文章信息/Info

Title:
Multi-population Genetic Algorithm Controlled by Information Entropy Based on Floating-point Coding
作者:
李纯莲1 王希诚2 赵金城3
1. 长春大学计算机科学与技术学院, 吉林长春130022;
2. 大连理工大学工业装备结构分析国家重点实验室, 辽宁大连116023;
3. 大连大学生物信息学与分子设计研究所, 辽宁大连1166
Author(s):
LI Chun-lian 1 WANG Xi-cheng 2ZHAO Jin-cheng 3
1. Institute of Computer Science and Technology,Changchun University,Changchun 130022, China;2. State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology,Dalian 116023, China;3. Institute of Bio-information and Molecular Design, Dalian University, Dalian 116621,China
关键词:
遗传算法 准精确惩罚函数 信息熵
Keywords:
g enet ic algorithm quas-i ex act penalty funct ion informational entropy
分类号:
TP18
摘要:
在用准精确惩罚函数处理约束优化问题的基础上 ,提出一种基于浮点数编码机制的信息熵控制多种群遗传算法。通过在遗传设计中定义一个新的概率而引入信息熵概念 ,构造出一个信息熵优化模型。该模型不必完全求解 ,即可容易求出作为概率的拉格朗日乘子 ,得出空间收缩概率 ,控制各种群中解空间的收缩。信息熵的介入可使优化过程更加平稳 ,收敛更快。同时 ,该算法给出了一种科学而有效的遗传设计收敛判据。实例证明该文算法在求解约束优化问题时快速、有效
Abstract:
An improved float ing-point coded genet ic algorithm controlled by informat ion entropy is presented to solve the const rained opt imizat ion problems based on the quas-i exact penalty funct ion. The concept of information entropy is int roduced into the genetic evolut ion by def ining the probability that the opt imal solution located in each populat ion, then a mult-i object ive model including informat ion entropy is constructed. By the use of this model, the probability can be st raightly obtained subsequent ly, the coef ficient of the designed space of v ariables narrow ing dow n for each populat ion can be got to cont rol the populations searching the optimal solution. T he int roduct ion of information ent ropy makes the opt imizat ion procedure more stable and the convergence speed faster. Besides, a new scientific and efficient convergent rule is used in this paper. Numerical examples are given to demonstrate the ef ficiency of the proposed algorithm.

参考文献/References:

[ 1] Holland J H. Adaption in natural and artificial systems( 2nd ed) [ M] . Cambridge: MIT Press, 1992.
[ 2] 武金瑛, 王希诚. 一种粗粒度并行遗传算法及其应用[ J] . 计算力学学报, 2002, 19( 2) : 148~ 153.
[ 3] 钟守楠. 遗传算法的收敛性与编码[ J] . 武汉水利电力大学学报, 2000, 33( 1) : 108~ 112.
[ 4] Li X S. An ag gregated functio n method for nonlinear program[ J] . Science in China Series A, 1991, 34: 1 467~ 1 473.
[ 5] 李兴斯. 解非线性规划的一个可微“ 准”精确惩罚函数法[ J] , 科学通报, 1991, 36( 19) : 1 451~ 1 453.
[ 6] 金振玉. 信息论[M] . 北京: 北京理工大学出版社, 1991.
[ 7] 李纯莲, 王希诚, 赵金城. 一种新的遗传算法停止准则[ J] . 辽宁工程技术大学学报, 2004, 23( 1) : 62~ 64.

相似文献/References:

[1]李克婧,张小兵.改进型遗传算法在弹丸结构优化设计中的应用[J].南京理工大学学报(自然科学版),2009,(03):339.
 LI Ke-jing,ZHANG Xiao-bing.Application of Improved Genetic Algorithm to Optimization Design of Projectile Structure[J].Journal of Nanjing University of Science and Technology,2009,(05):339.
[2]张俊芳,秦红霞,贾 晋,等.基于改进遗传算法的AGC机组优化组合研究[J].南京理工大学学报(自然科学版),2009,(06):801.
 ZHANG Jun-fang,QIN Hong-xia,JIA Jin,et al.Optimization of Generator Unit Commitment Including AGC Based on Improved Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(05):801.
[3]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
 HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(05):800.
[4]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报(自然科学版),2012,36(06):0.
 MEN Zhi guo,PENG Xiu yan,WANG Xing mei,et al.Volterra Series Kernels Estimation Algorithm Based on GA Optimized BP Neural Network Identification[J].Journal of Nanjing University of Science and Technology,2012,36(05):0.
[5]王钟羡,郭晨海,刘 军,等.结构优化设计的猴王遗传算法[J].南京理工大学学报(自然科学版),2004,(04):346.
 WANG Zhong xian,GUO Chen hai,LIU Jun,et al.Monkey-king Genetic Algorithms for Optimal Structural Design[J].Journal of Nanjing University of Science and Technology,2004,(05):346.
[6]张金萍,等.一种动态种群不对称交叉的新型遗传算法[J].南京理工大学学报(自然科学版),2007,(04):444.
 ZHANG Jin-ping,LIU Jie,LI Yun-gong.Novel Dynamic Population and Anisomerous Crossover Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2007,(05):444.
[7]康明才.基于遗传算法的变电站电压-无功综合控制[J].南京理工大学学报(自然科学版),2002,(05):490.
 KangMingcai.Control Strategy of Voltage and Reactive Power in Substation Based on Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2002,(05):490.
[8]杨云,徐永红,刘凤玉.一种连续探索型自适应遗传算法及其应用[J].南京理工大学学报(自然科学版),2002,(06):580.
 YangYun XuYonghong LiuFengfu.A Self-adaptative Genetic Algorithm Based on Relay Search Method and Its Application[J].Journal of Nanjing University of Science and Technology,2002,(05):580.
[9]刘 皓,胡明昕,朱一亨,等.基于遗传算法和支持向量回归的锂电池健康状态预测[J].南京理工大学学报(自然科学版),2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
 Liu Hao,Hu Mingxin,Zhu Yiheng,et al.Prediction for state of health of lithium-ion batteries by geneticalgorithm and support vector regression[J].Journal of Nanjing University of Science and Technology,2018,42(05):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]

备注/Memo

备注/Memo:
基金项目: 国家973 项目; 国家自然科学基金( 10272030)
作者简介: 李纯莲( 1973- ) , 女, 辽宁锦州人, 副教授, 博士, 主要研究方向: 遗传优化算法、计算机辅助药物分子设计等, E-mail: chunlian@ student. dlut. edu. cn。
更新日期/Last Update: 2013-03-11