[1]张 伟,姜献峰,孙 毅,等.密集三维散乱点数据的拓扑矩形网格自组织压缩重建[J].南京理工大学学报(自然科学版),2005,(02):136-139.
 ZHANG Wei,JIANG Xian-feng,SUN Yi,et al.Self-organizing Extraction Reconstruction of Topologic Rectangular Mesh for Dense 3-D Scattered Data[J].Journal of Nanjing University of Science and Technology,2005,(02):136-139.
点击复制

密集三维散乱点数据的拓扑矩形网格自组织压缩重建
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2005年02期
页码:
136-139
栏目:
出版日期:
2005-04-30

文章信息/Info

Title:
Self-organizing Extraction Reconstruction of Topologic Rectangular Mesh for Dense 3-D Scattered Data
作者:
张 伟1 姜献峰2 孙 毅2 丁秋林3
1.浙江大学城市学院机械电子工程系, 浙江杭州310015; 2. 浙江工业大学机电工程学院, 浙江杭州310014;
3.南京航空航天大学信息科学与技术学院, 江苏南京210016
Author(s):
ZHANG Wei 1JIANG Xian-feng 2SUN Yi 2DING Qiu-lin 3
1.Department of Mechanical and Electronic Engineering, Zhejiang University City College, Hangzhou 310015, China;2. College of Mechanical and Electronic Engineering,Zhejiang University of Technology, Hangzhou 310014, China;3. College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
逆向工程 矩形网格 神经网络 散乱点 数据压缩
Keywords:
reverse engineering rectangular mesh neural netw ork scattered point s data ex traction
分类号:
TP391.7
摘要:
探讨了曲面密集三维散乱点数据的拓扑矩形网格自组织压缩重建方法。建立了基于自组织特征映射神经网络的三维散乱点数据的拓扑矩形网格自组织压缩重建模型。该模型利用神经元对曲面散乱点的学习和训练来模拟曲面上的点与点之间的内在关系,结点连接权矢量集作为对散乱点集的工程近似化并重构曲面样本点的内在拓扑关系,实现曲面密集三维散乱点数据的自组织压缩。按矩形阵列侧抑制邻区训练调整网络神经元权重矢量,使网络输出层结点呈矩形阵列分布,可生成测量点集压缩后的拓扑矩形网格,可用于NURBS曲面重构。计算机仿真实验表明,所建模型可以实现三维密集散乱点数据自组织压缩,生成期望疏密程度和精度的双有序点列,重建矩形拓扑网格
Abstract:
Based on the sel-f organizing feature map( SOFM) neural network, an approach is developed to extract the dense 3-D scattered data and to produce the topologic rectangular mesh. The inherent topologic relations between the scattered points on the curved surface are reconstructed by the weight vectors of the neurons on the output layer of the neural network. The weight vectors of the neurons on the output layer of the neural network are used to approximate the dense 3-D scattered points, so the dense scattered points can be reduced to the reasonable scale, while the topologic feature of the whole scat tered points remained. The region of the lateral inhibition is rectangle within which the neuron weight vectors are adjusted according to the SOFM training algorithm. The neurons on the output layer are distributed in the array of rectangle after t raining, thereby the topologic rectangular mesh in a way of high approximation is produced which can be used to reconstruct the surface with NURBS method. The computer simulation results show that this approach is satisfactory.

参考文献/References:

[ 1] Br adley C. Free- form sur face reconstruct ion for machine vision r apid prototyping [ J] . Optical Engineering , 1993, 32( 9) : 2 191- 2 200.
[ 2] 朱心雄, 王拉柱, 朱本富, 等. 自由曲线曲面造型技术 [ M] . 北京: 科学出版社, 20001 138- 168.
[ 3] Kohonen T . T he sel-f org anizing map[ J] . Proceeding of IEEE, 1990, 78( 9) : 1 464- 1 479.
[ 4] Gu P, Yan X. Neural network appr oach to the reconstruct ion of freeform sur face for rever se engineering [ J] . Computer-Aided Desig n, 1995, 27( 1) : 59- 64.

相似文献/References:

[1]仝志民,唐文彦,马强,等.基于区域分割技术的等距天线曲面重构[J].南京理工大学学报(自然科学版),2008,(05):585.
 TONG Zhi-min,TANG Wen-yan,MA Qiang,et al.Reconstruction of Antenna Offset Surface Based on Segmentation Technique[J].Journal of Nanjing University of Science and Technology,2008,(02):585.
[2]慈瑞梅,李东波.逆向工程中NURBS曲面重构技术研究[J].南京理工大学学报(自然科学版),2004,(04):390.
 CI Rui mei,LI Dong bo.NURBS Surface Reconstruction in Reverse Engineering[J].Journal of Nanjing University of Science and Technology,2004,(02):390.

备注/Memo

备注/Memo:
浙江省自然科学基金 ( 5 990 0 8);浙江大学城市学院教师科研基金 (J5 2 30 30 4 2 0 0 7)
更新日期/Last Update: 2013-05-23