[1]管小荣,徐诚.二级轻气炮发射过程数学模型和计算方法[J].南京理工大学学报(自然科学版),2007,(01):22-26.
 GUAN Xiao-rong,XU Cheng.Mathematical Model and Computing Method for Launch Process of Two-stage Light-gas Gun[J].Journal of Nanjing University of Science and Technology,2007,(01):22-26.
点击复制

二级轻气炮发射过程数学模型和计算方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2007年01期
页码:
22-26
栏目:
出版日期:
2007-02-28

文章信息/Info

Title:
Mathematical Model and Computing Method for Launch Process of Two-stage Light-gas Gun
作者:
管小荣;徐诚;
南京理工大学机械工程学院, 江苏南京210094
Author(s):
GUAN Xiao-rongXU Cheng
School of Mechanical Engineering,NUST,Nanjing 210094,China
关键词:
二级轻气炮 Runge-Kutta方法 MacCormack格式 TVD格式 数学模型
Keywords:
two-stage ligh-t gasgun Runge-Kuttamethod MacCormackscheme TVDscheme mathematicalmodels
分类号:
TJ30
摘要:
建立起模拟二级轻气炮发射过程的数值方法。运用经典内弹道学理论描述药室内火药燃烧状况和活塞运动过程,可压缩流体一维变截面非定常无粘流动数学模型描述轻气室内气体流动状态和弹丸运动过程,并通过活塞运动状态将两者耦合到一起,建立起二级轻气炮发射过程的数学模型。运用经典Runge-Kutta方法求解药室方程,二阶MacCormack格式和Harten二阶TVD格式求解轻气室方程,通过两部分计算的交替进行,实现了二级轻气炮发射过程的数值模拟。分析不同差分格式对计算结果的影响,MacCormack格式具有较高的整体计算精度,而TVD格式可以更好地捕捉流场中的激波。
Abstract:
A numerical method for simulating launch process of two-stage light-gas gun is estab-lished. The classical theory of interior ballistics is employed to describe the combustion of powder in chamber and the movement of piston, and the mathem atical model for compressible unsteady inviscid quasi-one-dimensional flow is employed to describe the flowpattern in ligh-t gas chamber and the movement of projectile. These two groups of equations are coupled together by the movement of pis-tontosimulate the whole launch processof two-stage light- gas gun. The former equations are solved numerically with the classicalRunge-Kutta method, and the latter equations are solved numerically with the second-orderMacCorm ack scheme and the Harten’s second-order TVD scheme, respective-ly. The computation for the whole launch process of the two-stage light-gas gun is accom plished by alternation between these two computations. The effects of different schemes on the simulation results are also analyzed. The results show the higher precision can be gained using MacCormack scheme while shock can be captured more exactly using TVD scheme.

参考文献/References:

[ 1] Berggren R E, Reynolds RM. The Light-gas-gun model launcher [ R]. AD-713915, 1970. 13-91.
[ 2] 金志明,袁亚雄. 内弹道气动力原理[M]. 北京: 国防工业出版社, 1983. 326-331.
[ 3] 华东工学院八o 一研究室. 内弹道学(第3版) [ Z]. 南京: 华东工学院, 1986. 10-97.
[ 4] 李文绚,金保侠. 气体动力学计算方法[M]. 北京:机械工业出版社, 1990. 72-76.
[ 5] 水鸿寿. 一维流体力学差分方法[M]. 北京:国防工业出版社, 1998. 148-373.
[ 6] Anderson JD Jr. 计算流体力学入门[M]. 北京: 清华大学出版社, 2002. 40- 243.
[ 7] 张涵信, 沈孟育. 计算流体力学)) ) 差分方法的原理和应用[M]. 北京: 国防工业出版社, 2003. 107- 356.
[ 8] 王承尧,王正华, 杨晓辉. 计算流体力学及其并行算法[M]. 长沙: 国防科技大学出版社, 2000. 69 - 102.
[ 9] 郑慧娆,陈绍林, 莫忠息, 等. 数值计算方法[M]. 武汉:武汉大学出版社, 2002. 403- 426.

备注/Memo

备注/Memo:
作者简介: 管小荣( 1979- ), 男,江苏东台人, 博士生, 主要研究方向: 武器空气动力学, E-mail:Jason. guan@163. com;
通讯作者:徐诚( 1962-), 男,陕西汉中人, 教授,博士生导师, 主要研究方向: 武器空气动力学与武器系统仿真, E-mail: xucheng@sohu. com。
更新日期/Last Update: 2007-02-28