[1]刘兆磊,等.基于非均匀采样间隔的数据关联算法研究[J].南京理工大学学报(自然科学版),2007,(03):327-331.
 LIU Zhao-lei,XU Zhen-lai,ZHANG Guang-yi,et al.Data Association Algorithm Based on Non-uniform Sampling[J].Journal of Nanjing University of Science and Technology,2007,(03):327-331.
点击复制

基于非均匀采样间隔的数据关联算法研究
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2007年03期
页码:
327-331
栏目:
出版日期:
2007-06-30

文章信息/Info

Title:
Data Association Algorithm Based on Non-uniform Sampling
作者:
刘兆磊1 2 徐振来2 张光义1 2 郭燕昌2
1. 西安电子科技大学雷达信号处理国防重点实验室, 陕西西安710071; 2. 南京电子技术研究所, 江苏南京210013
Author(s):
LIU Zhao-lei12XU Zhen-lai2ZHANG Guang-yi12GUO Yan-chang2
1.National Key Laboratory of Radar Signal Processing,Xidian University,Xi’an 710071,China;2.Nanjing Research Institute of Electronics Technology,Nanjing 210013,China
关键词:
目标跟踪 后向概率 概率数据关联 多维数据关联
Keywords:
target tracking retrodicted probability probabilist ic data assoc iation mult-i d imensional associat ion
分类号:
TP301.6
摘要:
针对工程中普遍存在的非均匀采样目标跟踪问题,给出了基于多扫描的后向递归概率数据关联算法实现过程,讨论了判断目标丢失的准则。对分别基于一维和多维扫描数据进行数据关联判决的不同算法的性能进行了仿真分析。仿真结果表明:在采样次数不变的条件下,和应用单扫描的PDAF算法相比,多扫描非均匀采样方法能够获得更好的航迹维持性能。当目标检测概率越大、杂波密度越大、目标机动性能越大时,非均匀采样和均匀采样方法航迹维持性能的差别越大。
Abstract:
The procedure applying the backw ard recursive probabilist ic data associat ion filtering a-l gorithm based on mult-i scan is presented. The rules of track losing judgment are d iscussed. Simu lat ions aremade to compare the performance o f data assoc ia tion algorithm based onmu lt-i scan and sing le scan considering the non-uniform sampling prob lem that is common in practice for target tracking. On the cond ition o f the same samples, the resu lts show that non-un ifo rm samp ling can outperfo rm uniform samp ling in track m aintainability w hen association algorithm based on mu lt-i scan is used, and the more differences o f performance are shown tha t the process noise is h igher, the false alarm density is h igher and the probab ility o f detection is h igher.

参考文献/References:

[ 1] Steven T C, Kenneth B. Radar resource m anag em ent form echanically rota ted, e lectron ica lly scanned phased array radars [ A ]. IEEE Proceed ing s of the Radar Con ference [ C]. Los Ange les: IEEE, 1991. 88- 92.
[ 2] Thom asW J. Phased a rray radar track ing w ith non - uniform ly spaced m easurem ents [ A]. IEEE Proceedings of the Radar Confe rence [ C ] . Da llas: IEEE, 1998.
[ 3] A louaniA T, R iceT R. Asynchronous track fusion revisited [ A]. IEEE Proceed ings o f the Twenty- N inth Southeastern Symposium on System Theo ry [ C] . Tennessee: IEEE, 1997. 118- 122.
[ 4] Blackm an S, Popoli R. Design and ana lysis of mode rn tracking system s [M ]. Boston: Artech H ouse, 1999. 967- 1 065.
[ 5] N iu R X, Varshney P, M ehro traK, et a.l Temporal fusion in m ult-i sensor target tracking systems [ A ]. ISIF [ C]. Annapo lis: ISIF /IEEE, 2002. 1 030- 1 037.
[ 6] N iu R X, Va rshney P, M ehrotraK, et a.l Sensor stagge ring in mu lt-i senso r targe t track ing sy stem s [ A ]. 2003 IEEE Radar Conference [ C ]. H un tsv ille: IEEE, 2003.
[ 7] Drumm ond O E. M u ltiple-fram e best-hypothes is ta rget track ing w ith mu ltiple sensor [ A ]. Proceed ings o f SPIE, Vo l 5 204 [ C] . B ellingham: SPIE, 2003.
[ 8] Drumm ond O E. Targ et track ing w ith retrodicted discrete probab ilities [ A ]. SPIE Vol 3 163 [ C ]. San D iego: SPIE, 1997, 249- 268.
[ 9] Drumm ond O E. M ultip le targ et tracking w ith m ultip le fram e, probab ilistic data association [ A ]. SPIE Vo l 1954 [ C]. Orlando: SPIE, 1993. 394- 408.
[ 10] Li X R, Ba r-Sha lom Y. S tab ility evalua tion and track life o f the PDAF for tracking in c lutte r [ J]. IEEE T rans on AC, 1991, 36( 5): 588- 602.
[ 11] B ar-Sha lom Y, B lair W D, Mu ltitarg et- m ultisenso r track ing: applica tions and advances vo lum e III [M ]. Norw ood, MA: Artech H ouse. 2000.

相似文献/References:

[1]吴刚,唐振民,程勇,等.灰度共生矩阵纹理特征的运动目标跟踪方法[J].南京理工大学学报(自然科学版),2010,(04):459.
 WU Gang,TANG Zhen-min,CHENG Yong,et al.Object Tracking Method Based on Gray Level Co-occurrence Matrix Texture Characteristic[J].Journal of Nanjing University of Science and Technology,2010,(03):459.
[2]郭延芬,谭雪琴.约束仅方位跟踪粒子滤波器研究[J].南京理工大学学报(自然科学版),2008,(06):767.
 GUO Yan-fen,TAN Xue-qin.Constrained Bearing Only Tracking Particle Filters[J].Journal of Nanjing University of Science and Technology,2008,(03):767.
[3]胡昭华,宋耀良.一种用于运动跟踪的加窗粒子滤波新算法研究[J].南京理工大学学报(自然科学版),2007,(03):337.
 HU Zhao-hua,SONG Yao-liang.Motion Tracking Based on Novel Windowing Particle Filter[J].Journal of Nanjing University of Science and Technology,2007,(03):337.
[4]王建新,张先萌,沈世泉,等.提高飞行弹丸跟踪滤波器滤波精度的一种方法[J].南京理工大学学报(自然科学版),1993,(06):40.
[5]戴洪德,邹 杰,徐胜红,等.含预测和容错的自适应Kalman目标跟踪[J].南京理工大学学报(自然科学版),2015,39(01):108.
 Dai Hongde,Zou Jie,Xu Shenghong,et al.Adaptive Kalman filter combined with prediction and fault tolerance for target tracking[J].Journal of Nanjing University of Science and Technology,2015,39(03):108.

备注/Memo

备注/Memo:
基金项目: 国防科技重点实验室基金试点项目
作者简介: 刘兆磊( 1971- ), 男, 江苏邳州人, 高级工程师, 主要研究方向: 雷达系统和数据融合, E-mail: Leue123@sina.com。
更新日期/Last Update: 2007-06-30