[1]刘光杰,戴跃伟,赵玉鑫,等.隐写对抗的博弈论建模[J].南京理工大学学报(自然科学版),2008,(02):199-204.
 LIU Guang-jie,DAI Yue-wei,ZHAO Yu-xin,et al.Modeling Steganographic Counterwork by Game Theory[J].Journal of Nanjing University of Science and Technology,2008,(02):199-204.
点击复制

隐写对抗的博弈论建模
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2008年02期
页码:
199-204
栏目:
出版日期:
2008-04-30

文章信息/Info

Title:
Modeling Steganographic Counterwork by Game Theory
作者:
刘光杰;戴跃伟;赵玉鑫;王执铨;
南京理工大学自动化学院, 江苏南京210094
Author(s):
LIU Guang-jieDAI Yue-weiZHAO Yu-xinWANG Zhi-quan
School of Automation,NUST,Nanjing 210094,China
关键词:
隐写 隐写分析 博弈论
Keywords:
steganography steganalysis game theory
分类号:
TP309
摘要:
该文提出了以期望安全数据传输率作为支付函数的隐写博弈模型,建模了隐写方和攻击方之间的博弈对抗关系。根据相对嵌入率固定、以概率选择和自由选择三种不同情况,隐写对抗分别建模成矩阵博弈、贝叶斯博弈和二人零和无限博弈,得到博弈均衡条件和均衡局势下的期望安全数据传输率。隐写对抗模型的建立为隐写方和攻击方的最优策略选择提供了理论依据,对设计更安全的隐写算法具有一定的指导意义。
Abstract:
The steganographic game with the expected secure data transmission rate as the payoff function is proposed.The counterwork relationship is modeled between steganography side and attack side.According to the three situations that the relative embedding rate is fixed,chosen by the probability and freely chosen,the steganographic counterworks are modeled to the matrix game,the Bayesian game and the two-person zero-sun infinite game separately.The equilibrium conditions and the corresponding equilibrium expected secure data transmission rates are obtained.The instauration of the steganographic counterwork model provides the theoretic basis for the steganography side and the attack side to choose their optimal strategies,and brings some guidance for designing more secure steganographic algorithms.

参考文献/References:

[1] Zo llne r J, K limantH, Pfizm ann A, et a,l M ode ling the secur ity o f steganog raph ic system s [ J]. Lecture Notes in Com puter Sc ience, 1998 ( 1 525): 345- 355.
[2] Cachin C, An info rma tion??theoretic m ode l for steg?? anography [ J] . Inform ation and Compu tation, 2004, 192 ( 1): 41- 56.
[3] W ang Y, M oulin P. Stegana ly sis of b lock??structured stego tex t [ A] . Proceedings o f SPIE: Secur ity, Steg?? anography, andW aterm ark ing o fM ultim edia Contents VI [ C ]. San Jose, CA: SPIE, 2004. 477- 488.
[4] 陈丹, 王育民. 基于图像模型的掩密安全性定义 [ J]. 哈尔滨工业大学学报, 2006, 38 ( sup. ) : 901 - 904.
[5] Sa llee P. M ode l??based steganog raphy [ J]. Lecture No tes in Com puter Sc ience, 2003( 2 939): 154- 167.
[6] Cox I J, Ka lkerT, PakuraG, et a .l Info rm ation trans?? m iss ion and steg anog raphy [ J ]. Lecture No tes in Computer Sc ience, 2005 ( 3 710) : 15- 29.
[7] Katzenbe isser S, Pe titco las F A. De fin ing secu rity in steganographic system s [ A]. Proceed ings of SPIE Se?? curity and W ate rm ark ing o fM ultim edia Contents & [ C]. San Jose, CA: SPIE, 2002. 50- 56.
[8] H opperN J, Lang fo rd J, Luis V A. Provab ly secure steganog raphy ( Ex tended abstrac t) [ J ]. Lecture No tes in Com puter Science, 2002 ( 2 442): 77- 92.
[9] M ou lin P, O? Su llivan J A. Info rm ation??theo retic ana l?? ysis o f inform ation hiding [ J]. IEEE Transaction on Inform ation Theory, 2003, 49 ( 3): 563- 593.
[10] M ou lin P, M ihcakM K. The paralle l??Gauss ian w ate r?? m ark ing gam e [ J]. IEEE T ransaction on Info rma tion Theory, 2004, 50 ( 2): 272- 289.
[11] Cohen A S, Lap idoth A. The Gaussian waterm ark ing g am e [ J] . IEEE Transac tion on Inform a tion Theory, 2002, 48 ( 6): 1 639- 1 667.
[12] E ttinger J. Stegana lysis and g am e equ ilibriap [ J]. Lecture No tes in Com puter Sc ience, 1998 ( 1 525): 319- 328.
[13] 刘春庆, 李忠新, 王执铨. 隐秘通信系统的对策论 模型[ J]. 通信学报, 2004, 25( 5) : 160- 165

相似文献/References:

[1]李晓龙,杨斌.LSB Matching的嵌入效率分析[J].南京理工大学学报(自然科学版),2008,(04):429.
 LI Xiao-long,YANG Bin.Analysis on Embedding-efficiency of LSB Matching[J].Journal of Nanjing University of Science and Technology,2008,(02):429.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 60374066) 作者简介: 刘光杰( 1980- ), 男, 江苏徐州人, 讲师, 博士, 主要研究方向: 信息隐藏和多媒体加密, E-mail: guang j_ liu@ yahoo. com. cn; 通讯作者: 戴跃伟( 1962- ), 男, 江苏镇江人, 教授, 博士生导师, 主要研究方向: 信 息安全技术, 信息隐藏与应用, E-mail: da iywei@ 163. com。
更新日期/Last Update: 2008-04-30