[1]石杏喜,等.CUKF算法及其在移动机器人组合导航中的应用[J].南京理工大学学报(自然科学版),2009,(01):37-41.
 SHI Xing-xi,ZHAO Chun-xia,GUO Jian-hui.Algorithm of CUKF and Its Application to Mobile Robot Integrated Navigation[J].Journal of Nanjing University of Science and Technology,2009,(01):37-41.
点击复制

CUKF算法及其在移动机器人组合导航中的应用
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2009年01期
页码:
37-41
栏目:
出版日期:
2009-02-28

文章信息/Info

Title:
Algorithm of CUKF and Its Application to Mobile Robot Integrated Navigation
作者:
石杏喜1 2 赵春霞2 郭剑辉2
南京理工大学1. 理学院; 2. 计算机科学与技术学院, 江苏南京210094
Author(s):
SHI Xing-xi12ZHAO Chun-xia2GUO Jian-hui2
1.School of Sciences;2.School of Computer Science and Technology,NUST,Nanjing 210094,China
关键词:
无色卡尔曼滤波 移动机器人 组合导航 差分全球定位系统 航位推算
Keywords:
unscented Kalman filter mobile robots integrated navigation difference global positioning system dead reckoning
分类号:
TP242
摘要:
针对移动机器人位置的精确估计问题,提出一种附有约束的无色卡尔曼滤波(CUKF)算法。由于无色卡尔曼滤波(UKF)在处理非线性问题时,无需计算Jacobian矩阵或Hessian矩阵,从而有效地减小了线性化对非线性系统误差的影响。CUKF算法很好地利用了UKF的非线性滤波特点,在其基础上增加某种约束。将地理信息系统(GIS)环境下的地图数据库中的道路方向信息作为约束条件,通过引入拉格朗日函数解决具有约束的差分全球定位系统/航位推算(DGPS/DR)组合导航系统的非线性最优估计。仿真实验结果表明:CUKF比U
Abstract:
The algorithm about a constrained unscented Kalman filter(CUKF)is proposed to estimate the localization of the mobile robot.The unscented Kalman filter(UKF) doesn’t compute the Jacobian matrix nor the Hessian matrix when it processes the nonlinear questions and it can decrease effectively the error of nonlinear system caused by the linearization.The algorithm of CUKF takes full advantage of characteristics of the UKF and some restrictions are increased.The road direction of the digital map database in geographic information system(GIS) environment is regarded as the state constrained condition.The nonlinear optimization estimation about DGPS/DR(difference global positioning system/dead reckoning) integrated navigation system can be resolved through the Lagrangian function.Simulation results show that the CUKF can more effectively improve the position precision than the UKF.

参考文献/References:

[ 1] Huang J, Tan H S. A low-orderDGPS-based vehicle positioning system under urban env ironment[ J]. IEEE /ASME Transactions onM echatron ics, 2006, 11( 5): 567- 575.

[ 2] Q i H onghu,i M oore J B. Direct K alm an filtering approachforGPS / INS integration[ J]. IEEE T ransactionson Aerospace and E lectron ic System s, 2002, 38( 2):687- 693.
[ 3] Huang J, Tan H S. DGPS /INS-based vehicle positioningw ith novel DGPS no ise processing [ A]. Proceed ings o fthe 2006 Am erican Control Conference[ C]. M inneapolis,M innesota, USA: IEEE, 2006. 3966- 3971.
[ 4 ] Rag el B, FarooqM. DGPS aided INS nav igation fo rAUV [ A]. The 47 th IEEE In ternationalM idw est Symposiumon C ircuits and System s[ C]. H irosh im a, Japan:IEEE, 2004. ó 407- ó 410.
[ 5] Julie r S J, Uh lm ann J K. Unscented filtering and nonlinearestim a tion[ J] . Proceedings o f the IEEE, 2004,92( 3): 401- 422.
[ 6] 隋树林, 姚文龙, 赵晓伟. 基于小波-UKF的自主光学导航方法研究[ J]. 系统仿真学报, 2007, 19( 12):2776- 2782.
[ 7] Zhang Pifu, Gu Jason, M ilios E E, e t a.l Nav iga tionw ith IMU /GPS /Dig ital com pass w ith unscented Ka-lm an filter[ A ]. Pro ceedings o f the IEEE Internationa lConference onM echa tron ics& Autom ation[ C]. N iagaraFa lls, C anada: IEEE, 2005. 1497- 1502.
[ 8] Ashokara j I, Tsourdos A, S ilson P, et a.l Sensor basedrobo t loca lization and nav igation: Using interva l analysisand unscented Kalm an filter[ A ]. Proceeding s o f IEEE /RSJ International Conference on Intelligent Robo ts andSystem s[ C]. Senda,i Japan: IEEE, 2004. 7- 12.
[ 9] 张卫明, 张继惟, 范子杰, 等. UKF方法在惯性导航系统初始对准中的应用研究[ J]. 系统工程与电子技术, 2007, 29( 4): 589- 592.
[ 10] Panzieri S, Pascucc i F, U liv i G. An outdoor nav igationsystem usingGPS and inertia l platform [ J]. IEEE /ASMETransactions onMechatronics, 2002, 7( 2): 134- 142.
[ 11] 张红梅, 刘胜, 张晓宇. 一种车载组合导航系统的联邦滤波新算法[ J]. 中国惯性技术学报, 2006, 14( 6):30- 33.
[ 12] 刘健, 刘忠. UKF算法在纯方位目标运动分析中的应用[ J]. 南京理工大学学报(自然科学版), 2008,32( 2): 222- 226.
[ 13] Ch iang Y T, W ang L S, Chang F R, e t a.l Constrainedfiltering m ethod for attitude dete rm ina tion us ingGPS and gy ro [ J]. IEE Proceed ing s) Radar, Sonarand N av ig ation, 2002, 149( 5): 258- 264.
[ 14] W ang L S, Ch iang Y T, Chang F R. Filtering m ethodfor nonlinear system s w ith constrain ts[ J] . IEE Proceeding s) Contro l Theory and App lica tions, 2002,149( 6): 525- 531.
[ 15] Smi on D, Li Chia T ien. Kalm an filter ing w ith state equality constraints[ J]. IEEE Transactions on Aerospaceand E lectronic Systems, 2002, 38( 1): 128- 136.

相似文献/References:

[1]赵娟平,高宪文,符秀辉.改进蚁群优化算法求解移动机器人路径规划问题[J].南京理工大学学报(自然科学版),2011,(05):637.
 ZHAO Juan-ping,GAO Xian-wen,FU Xiu-hui.Improved Ant Colony Optimization Algorithm for Solving Path Planning Problem of Mobile Robot[J].Journal of Nanjing University of Science and Technology,2011,(01):637.
[2]王 雷,李 明.改进自适应遗传算法在移动机器人路径规划中的应用[J].南京理工大学学报(自然科学版),2017,41(05):627.[doi:10.14177/j.cnki.32-1397n.2017.41.05.015]
 Wang Lei,Li Ming.Application of improved adaptive genetic algorithmin mobile robot path planning[J].Journal of Nanjing University of Science and Technology,2017,41(01):627.[doi:10.14177/j.cnki.32-1397n.2017.41.05.015]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 60705020)
作者简介: 石杏喜( 1975- ), 男, 博士, 讲师, 主要研究方向: 模式识别, 机器人自主导航, GPS卫星定位理论及其组合导航等, E-m ail:x ingx ishi@163. com。
更新日期/Last Update: 2012-11-19