[1]付卫红,杨小牛,刘乃安,等.基于阵列结构的盲分离算法[J].南京理工大学学报(自然科学版),2009,(02):168-171.
 FU Wei-hong,YANG Xiao-niu,LIU Nai-an,et al.Novel Blind Source Separation Algorithm Based on Array Constructure[J].Journal of Nanjing University of Science and Technology,2009,(02):168-171.
点击复制

基于阵列结构的盲分离算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2009年02期
页码:
168-171
栏目:
出版日期:
2009-04-30

文章信息/Info

Title:
Novel Blind Source Separation Algorithm Based on Array Constructure
作者:
付卫红1 杨小牛2 刘乃安1 曾兴雯1
1. 西安电子科技大学ISN 国家重点实验室, 陕西西安710071; 2. 江南电子通信研究所通信系统信息控制技术国家重点实验室, 浙江嘉兴314033
Author(s):
FU Wei-hong1YANG Xiao-niu2LIU Nai-an1ZENG Xing-wen1
1.State Key Laboratory of Integrated Services Networks,Xi’dian University,Xi’an 710071,China;2.National Laboratory of Information Control Technology for Communication System,Jiangnan ElectronicCommunications Research Institute,Jiaxing 314033,China
关键词:
盲信号处理 盲源分离 均匀线阵
Keywords:
blind signal processing blind source separation unitary linear array
分类号:
TN911.7
摘要:
为了进一步改善阵列信号处理中盲源分离算法的分离性能,提出了一种新的基于阵列结构的盲分离算法。该算法的基本思想是利用已有的盲源分离算法(EASI和FastICA算法)估计混合矩阵,根据估计出来的混合矩阵和均匀线阵的特点来重构混合矩阵,对分离矩阵进行较正,达到改善算法分离性能的目的。仿真结果表明,该文提出的EASI-1算法的平均干信比比EASI算法低7.5 dB,FastICA-1算法的平均干信比比FastICA算法低4.3 dB。
Abstract:
To improve the separation performance of the blind source separation algorithm in array signal processing,a novel separation algorithm based on array constructure is presented here.The basic idea of the algorithm is that the mixing matrix is estimated by using the available blind source separation algorithm(i.e.EASI or FastICA).The mixing matrix is reconstructed according to the estimated mixing matrix and the characteristic of the unitary linear array.This reconstructed mixing matrix can be used to revise the separation matrix and improve the performance of the algorithm.Simulation results show that the average interference signal ratio of EASI-1 algorithm presented here is lower 7.5 dB than that of the EASI algorithm,and that of the FastICA-1 is lower 4.3 dB than that of the FastICA algorithm.

参考文献/References:

[ 1] 付卫红, 杨小牛, 刘乃安, 等. 基于概率密度估计盲分离的通信信号盲侦察技术[ J]. 华中科技大学学报, 2006, 34( 10): 24- 27.
[ 2] 丛丰裕, 雷菊阳, 许海翔, 等. 在线增强型复值混合信号盲分离算法研究[ J]. 西安交通大学学报, 2006, 40( 9) : 1070- 1073.
[ 3] 傅予力, 沈轶, 谢胜利. 基于规范高阶累积量的盲分离算法[ J]. 应用数学, 2006, 19( 4): 869- 876.
[ 4] W ang Zhenl,i Zhang Xiongwe ,i Cao T ieyong. A new blind source separation algor ithm based on second-orde r statistics fo rTITO [ A]. LectureNotes In Com puter Science[ C]. H e idelberg: Spr ing er-Ve rlag, 2006. 29 - 34.
[ 5] TaoH uan, Zhang Jianyun, Yu Lin. A new step-adaptive natural gradient algorithm for blind sou rce separation[ A ]. Lecture Noted in Com puter Sc ience [ C ]. H e ide lberg: Spr inge r-Ver lag, 2006. 35- 40.
[ 6] Cardoso J F. Equivariant adaptive source separation [ J ]. IEEE Trans on S igna l Processing, 1996, 44 ( 12): 3017- 3029.
[ 7] H yvarinen A. Fast and robust fix ed-po in t a lgor ithm s for independent component analysis[ J]. IEEE T rans on Neura lNe tw orks, 1999, 10( 3) : 626- 634.
[ 8] B ingham E, H yvar inen A. ICA o f comp lex va lued signa ls: a fast and robust de flationary a lgo rithm [ A]. International Jo int Conference on N eural N etworks[ C]. W ashing ton: Institute o f Electrical and E lectronics Eng ineers Computer Soc ie ty, 2000. 357- 362.
[ 9] B ingham E, H yvarinen A. A fast fixed-po int a lgo rithm fo r independent com ponent ana lysis of com plex va lued signa ls[ J]. Inte rnational Journa l o f Neura l System s, 2000, 10( 1) : 1- 8.
[ 10] C ichocki A, Am ar i S. Adap tive b lind signa l and im age pro cessing[M ]. N ew Yo rk: John W iley and Sons, 2002. 103- 103.

相似文献/References:

[1]付卫红,杨小牛,曾兴雯,等.适用于通信侦察的信号盲分离算法[J].南京理工大学学报(自然科学版),2008,(02):189.
 FU Wei-hong,YANG Xiao-niu,ZENG Xing-wen,et al.Signal Blind Separation Algorithm Applying to Communication Reconnaissance[J].Journal of Nanjing University of Science and Technology,2008,(02):189.
[2]杨青川,臧传霞,李天雷,等.基于帕斯维尔定理的频域积分盲源分离算法[J].南京理工大学学报(自然科学版),2015,39(01):102.
 Yang Qingchuan,Zang Chuanxia,Li Tianlei,et al.Frequency-domain blind separation of convolutive mixtures based on Parseval's theorem[J].Journal of Nanjing University of Science and Technology,2015,39(02):102.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 60702060); 高等学校学科创新引智计划( B08038)
作者简介: 付卫红( 1979- ) , 女, 博士, 副教授, 主要研究方向: 盲信号处理, 宽带无线通信, E-mail:whfu@ m a il.x idian. edu. cn。
更新日期/Last Update: 2012-11-19