[1]吕念春,等.Ⅲ型非对称界面裂纹受运动变载荷作用下的解析解[J].南京理工大学学报(自然科学版),2009,(05):612-618.
 Lü Nian-chun,LIU Xuan,CHENG Yun-hong,et al.Analytical Solution of Mode Ⅲ Asymmetrical Interface Crack under Action of Moving Variable Loads[J].Journal of Nanjing University of Science and Technology,2009,(05):612-618.
点击复制

Ⅲ型非对称界面裂纹受运动变载荷作用下的解析解
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2009年05期
页码:
612-618
栏目:
出版日期:
2009-10-30

文章信息/Info

Title:
Analytical Solution of Mode Ⅲ Asymmetrical Interface Crack under Action of Moving Variable Loads
作者:
吕念春 1 3 刘 璇 4 程云虹 2 李新刚 3 程 靳 3
1. 沈阳理工大学材料科学与工程学院, 辽宁沈阳110168; 2.东北大学土木工程系,辽宁沈阳110006; 3. 哈尔滨工业大学航天学院, 黑龙江哈尔滨150001; 4.上海海洋大学工程学院,上海201306
Author(s):
Lü Nian-chun13LIU Xuan4CHENG Yun-hong2LI Xin-gang3CHENG Jin3
1.School of Materials Science and Engineering,Shenyang Ligong University,Shenyang 110168,China;2.Department of Civil Engineering,Northeastern University,Shenyang 110006,China;3.School of Astronantics meansures,Harbin Engineering University,Harbin 150001,C
关键词:
复变函数 Ⅲ型非对称界面裂纹 动态扩展 自相似函数 解析解
Keywords:
complex functions mode Ⅲ asymmetrical interface crack dynamic propagation self-similar functions analytical solutions
分类号:
O346.1
摘要:
通过复变函数论的方法,对Ⅲ型非对称界面裂纹受运动变载荷作用下的动态问题进行了研究。采用自相似函数的途径,通过相应的微分、积分运算容易地获得解析解的一般表达式。应用该法迅速地将所讨论的问题转化为Riemann-Hilbert问题,并求得了裂纹表面分别受到运动变载荷作用下应力、位移和动态应力强度因子的解析解。通过Muskhelishvili方法得到问题的闭合解。利用这些解以及叠加原理,求得了任意复杂问题的解。
Abstract:
By the measures of the theory of complex functions,the dynamic propagation problems concerning mode Ⅲ asymmetrical interface crack under the action of moving variable loads are studied.The universal expressions of analytical solutions are readily attained by the technique of self-similar functions and corresponding differential and integral operation.The problem discussed here can be easily translated into Riemann-Hilbert problem by this approach,and the analytical solutions of the stress,displacement and dynamic stress intensity factor under the crack surfaces subjected to moving variable loads are respectively attained.Their closed solutions are obtained by means of Muskhelishvili’s method.The solutions of the discretionally complex problems can be gained by those solutions and superposition theorem.

参考文献/References:

[ 1] LiuXF. Closed-formsolutionfor amode- interface crackbetweentwobondeddissimilar elastic layers[ J]. Int JFrac, 2001, 109( 1): L3-L8.
[ 2] ComninouM. On the behaviour of interface cracks [ J]. Int J Struc Mech andMaterials Sc,i 1980, 1(4): 249- 264.
[ 3] AlezanderM. Korsunsky. Debonding of aweak inter-face in front of a through-thickness crack[ J]. Int J Frac, 2001( 109): L35-L40.
[ 4] Broberg KB. Cracks andFracture[M]. NewYork: AcademicPress, 1999.
[ 5] WeiP J, Zhang SY, WuYL, et a.l DynamicSIF of interface crack between two dissimilar viscoelastic bodies under impact loading[ J]. Int J Frac, 2000 (105): 127-136.
[ 6] LNianchun, Cheng Jin, Cheng Yunhong. Mode interface crack propagation in two joinedmedia with weakdissimilarityandstrongorthotropy[ J]. TheoApp FracMec, 2001, 36( 2): 219-231.
[ 7] 程靳. 不同正交异性材料界面上的扩展裂纹问题 [ J]. 固体力学学报, 1987( 2): 108-115.
[ 8] 吕念春, 唐立强, 程云虹. 正交异性复合材料界面上反平面动态自相似扩展裂纹问题的解[ J]. 力学季刊, 2003, 24( 1): 108- 112.
[ 9] 杨敬源, 吕念春, 唐立强. 沿弱界面的型界面裂纹中心区受均布载荷下的动态扩展问题[ J]. 哈尔滨工业大学学报, 2004, 37( 3): 414-417.
[ 10] AtkinsonC. On the dynamic stress and displacement fieldassociatedwitha crackpropagating across the in-terfacebetween two media[ J]. Int JEng Sc,i 1974 ( 14): 491- 506.
[ 11] BrockLM. Dynamic intensity factors for an interface flawextending at a non-uniformrate[ J]. JElasticity, 1974( 4): 51- 63.
[ 12] Lee KW, Earmme YY. An interfacial edge crack anistropic bimaterial under ant-iplane singularity[ J]. Int JFrac, 2000( 104): 15-23.
[ 13] Choi S R, Chong CH, Chai Y S. Interfacial edge cracking in two bondeddissimilar orthotropic quarter planesunder ant-iplane shear[ J]. Int JFrac, 1994 (67): 143-150.
[ 14] Rubin-GonzaleaC, Mason JJ. Dynamic intensity fac-torsat the tipof a uniformly loadedsem-i infinite crack inanorthotropicmaterial[ J]. JMech andPhys So,l 2000, 48( 5): 899-925.
[ 15] Guz I, Menshykov O, Menshykov V. Application of boundary integral equations to elastodynamicsof anin-terface crack[ J]. Int J Frac, 2006, 140( 1- 4): 277- 284.
[ 16] WuK C. On the contact zone model for interface cracks[ J]. J Appl Mech Trans ASME, 1992, 59( 1): 92- 94.
[ 17] WangYueshen, WangDuo. Transientmotionofanin-terface dislocation and sel-f similar propagation of an interface crack: ant-i plane motion[ J]. Eng Frac Mech, 1996, 55( 5): 717-725.
[ 18] WuKuang-Chong. Explicit crack-tip fields of anex-tending interface crack in an anisotropic biomateria.l Int JSolidsStruc, 1991, 27( 4): 455- 466.
[ 19] MuskhelishviliN I. Some Fundamental Problems in theMathematicalTheory of Elasticity[M]. Moscow: Nauka, 1966.
[ 20] MuskhelishviliN I. Singular Integral Equations[M]. Moscow: Nauka, 1968.
[ 21] LNianchun, Cheng Yunhong, TianXiubo, et a.l Dynamic propagation problem on Dugdale model of mode interface crack[ J]. AppMathMech, 2005, 26( 9): 1212- 1221.
[ 22] HoskinsRF. GeneralizedFunctions[M]. Chicester: EllisHorwoodLtd, 1979.
[ 23] Gahov FD. Boundary-value Problems[M]. Moscow: Fizmatgiz, 1963.
[ 24] SihG C. Mechanics of Fracture 4 Elastodynamics CrackProblems[M]. Leyden: Noordhof,f 1977.
[ 25] KanwalRP, SharmaDL. Singularitymethodsfor elas-tostatics[ J]. JElasticity, 1976, 6(4): 405-418.
[ 26] 同济大学数学教研室. 高等数学(上册) [M]. 北京: 高等教育出版社, 1994.
[ 27] Kalthoff JF, Beinert J, Winkler S. Measurements of dynamic stress intensity factors for fast running andar-resting cracks in double-cantilever-beam specimens [ J]. Fast fracture andarrest, ASTM-STP627, 1977, 161-176.
[ 28] KobayashiAS. Dynamic fracture analysisby dynamic finite elementmethod: Generation andpredictionana-lyses[ J]. Nonlinear and dynamic fracturemechanics Amd, ASME, 1979( 35): 19-36.
[ 29] LNianchun, YangDingning, ChengYunhong, et a.l AsymmetricalDynamicPropagationProblemsonMode  Interface Crack[ J]. App MathMech, 2007, 28( 4): 501- 510.
[ 30] LNianchun, Cheng Yunhong, Cheng Jin. Dynamic propagation problems concerning asymmetrical mode III interface crack[ J]. International Journal for Com-putationalMethods in Engineering Science andMe-chanics, 2008, 9( 4): 246-253.
[ 31] Rav-iChandar K, KnaussWG. An experimental in-vestigation into dynamic fracture: Pt. 1, Crack initia-tion and arrest[ J]. Int J Frac, 1984, 25( 4): 247 - 262.
[ 32] Rav-iChandar K, KnaussWG. An experimental in-vestigation into dynamic fracture: Pt. 3, On steady-state crackpropagationandcrackbranching[ J]. Int J Frac, 1984, 26( 2): 141-154.
[ 33] 程靳. 某些正交异性体弹性动力学问题[ J]. 哈尔滨工业大学学报, 1985(增刊)工程力学专缉: 8-21.
[ 34] AtkinsonC. The propagationof a brittle crack in an-i sotropicmaterial[ J]. Int JEngng Sc,i 1965, 3( 2): 77- 91.
[ 35] LNC, Cheng J, Cheng YH. Adynamicmodel of bridging fiber pul-l out of composite materials[ J]. MechResCommun, 2005, 32( 1): 1-14.
[ 36] LNianchun, Cheng Yunhong, XUHongmin, et a.l Dynamic crackmodels on problems of bridging fiber pul-l out of compositematerials[ J]. AppMathMech, 2004, 25( 10): 1194- 1202.

备注/Memo

备注/Memo:
 基金项目: 中国博士后基金( 2005038199); 黑龙江省自然科学基金重点项目( ZJG04-08) 
作者简介: 吕念春( 1965- ),男, 博士后,副教授, 主要研究方向: 复合材料断裂动力学, E-mail:lnc_65@163. com;
通讯作者:刘璇( 1975- ), 博士后, 讲师, 主要研究方向: 机械制造及其自动化, E-mail: xliu@hhou. edu. cn。
更新日期/Last Update: 2012-11-19