参考文献/References:
[ 1] 余廷芳, 林中达. 部分解约束算法在机组负荷优化组合中的应用[ J]. 中国电机工程学报, 2009, 29( 2): 107-112.
[ 2] Valenzuela J, SmithAE. A seededmemetic algorithm for large unit commitment problems[ J]. Journal of Heuristics, 2002, 8( 2): 173-195.
[ 3] 李铁苍, 周黎辉,张光炜, 等. 基于粒子群算法的火电厂机组负荷优化分配[ J]. 华北电力大学学报, 2008, 35( 1): 44-47.
[ 4] 贾德香, 程浩忠,熊虎岗, 等. 考虑控制性能标准的 AGC机组经济补偿研究[ J]. 中国电机工程学报, 2007, 27( 31): 52-56.
[ 5] 王民量, 张伯明, 夏清. 考虑多种约束条件的机组组合新算法[ J]. 电力系统自动化, 2000, 24( 12): 29- 34.
[ 6] WalshMP, O. MalleyMJ. Augmentedhopfieldne-t work for unit commitment and economic dispatch[ J]. IEEETransonPower Systems, 1997, 12( 4): 1765-1774.
[ 7] 吴金华, 吴耀武,熊信艮, 等. 机组优化组合问题的随机tabu搜索算法[ J]. 电网技术, 2003, 27( 10): 35- 38.
[ 8] 范宏, 韦化. 改进遗传算法及其在机组优化组合中的应用[ J]. 电力系统及其自动化学报, 2004, 16( 4): 46-50.
[ 9] 张振宇, 葛少云, 刘自发. 粒子群优化算法及其在机组优化组合中应用[ J]. 电力自动化设备, 2006, 26( 5): 28- 31.
[ 10] 吴金华, 吴耀武, 熊信艮. 基于退火演化算法和遗传算法的机组优化组合算法[ J]. 电网技术, 2003, 27( 1): 26- 29.
相似文献/References:
[1]李克婧,张小兵.改进型遗传算法在弹丸结构优化设计中的应用[J].南京理工大学学报(自然科学版),2009,(03):339.
LI Ke-jing,ZHANG Xiao-bing.Application of Improved Genetic Algorithm to Optimization Design of Projectile Structure[J].Journal of Nanjing University of Science and Technology,2009,(06):339.
[2]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(06):800.
[3]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报(自然科学版),2012,36(06):0.
MEN Zhi guo,PENG Xiu yan,WANG Xing mei,et al.Volterra Series Kernels Estimation Algorithm Based on GA Optimized BP Neural Network Identification[J].Journal of Nanjing University of Science and Technology,2012,36(06):0.
[4]王钟羡,郭晨海,刘 军,等.结构优化设计的猴王遗传算法[J].南京理工大学学报(自然科学版),2004,(04):346.
WANG Zhong xian,GUO Chen hai,LIU Jun,et al.Monkey-king Genetic Algorithms for Optimal Structural Design[J].Journal of Nanjing University of Science and Technology,2004,(06):346.
[5]李纯莲,王希诚,赵金城.基于浮点数编码的信息熵控制多种群遗传算法[J].南京理工大学学报(自然科学版),2004,(05):453.
LI Chun-lian,WANG Xi-cheng,ZHAO Jin-cheng.Multi-population Genetic Algorithm Controlled by Information Entropy Based on Floating-point Coding[J].Journal of Nanjing University of Science and Technology,2004,(06):453.
[6]张金萍,等.一种动态种群不对称交叉的新型遗传算法[J].南京理工大学学报(自然科学版),2007,(04):444.
ZHANG Jin-ping,LIU Jie,LI Yun-gong.Novel Dynamic Population and Anisomerous Crossover Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2007,(06):444.
[7]康明才.基于遗传算法的变电站电压-无功综合控制[J].南京理工大学学报(自然科学版),2002,(05):490.
KangMingcai.Control Strategy of Voltage and Reactive Power in Substation Based on Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2002,(06):490.
[8]杨云,徐永红,刘凤玉.一种连续探索型自适应遗传算法及其应用[J].南京理工大学学报(自然科学版),2002,(06):580.
YangYun XuYonghong LiuFengfu.A Self-adaptative Genetic Algorithm Based on Relay Search Method and Its Application[J].Journal of Nanjing University of Science and Technology,2002,(06):580.
[9]刘 皓,胡明昕,朱一亨,等.基于遗传算法和支持向量回归的锂电池健康状态预测[J].南京理工大学学报(自然科学版),2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
Liu Hao,Hu Mingxin,Zhu Yiheng,et al.Prediction for state of health of lithium-ion batteries by geneticalgorithm and support vector regression[J].Journal of Nanjing University of Science and Technology,2018,42(06):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
[10]国丽萍,王 帅.基于遗传算法的含蜡原油触变模型拟合结果评价[J].南京理工大学学报(自然科学版),2020,44(03):379.[doi:10.14177/j.cnki.32-1397n.2020.44.03.018
]
Guo Liping,Wang Shuai.Assessment of thixotropic model fitting results of waxy
crude oil based on genetic algorithm[J].Journal of Nanjing University of Science and Technology,2020,44(06):379.[doi:10.14177/j.cnki.32-1397n.2020.44.03.018
]