[1]向 妮.一类非严格拟凸域上复Monge-Ampère方程弱解的存在性研究[J].南京理工大学学报(自然科学版),2009,(06):806-808.
 XIANG Ni.Existence of Weak Solution for Complex Monge-Ampère Equation in Some Special Pseudoconvex Domain[J].Journal of Nanjing University of Science and Technology,2009,(06):806-808.
点击复制

一类非严格拟凸域上复Monge-Ampère方程弱解的存在性研究
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2009年06期
页码:
806-808
栏目:
出版日期:
2009-12-30

文章信息/Info

Title:
Existence of Weak Solution for Complex Monge-Ampère Equation in Some Special Pseudoconvex Domain
作者:
向 妮 1 2
1.南京理工大学理学院, 江苏南京210094; 2.湖北大学数学与计算机科学学院,湖北武汉430062
Author(s):
XIANG Ni12
1.School of Sciences,NUST,Nanjing 210094,China;2.Faculty of Mathematics and Computer Science,Hubei University,Wuhan 430062,China
关键词:
复Monge-Ampère方程 多重下调和函数 拟凸域 存在性
Keywords:
complex Monge-Ampère equations plurisubharmonic functions pseudoconvex domain existence
分类号:
O175.23
摘要:
为了研究拟凸域上复Monge-Ampère方程弱解的存在性,利用区域的边界性质构造下解。在下解蕴涵解的理论基础上得到了一类特殊的拟凸区域上弱解的存在性。研究结果表明下解的构造依赖于特殊区域的边界性质。
Abstract:
In order to prove the existence of weak solution for the complex Monge-Ampère equation in the pseudoconvex domain,the sub-solution is constructed by the properties of the domain.According to the theorem that the sub-solution can imply the solution,the existence of weak solution in some special pseudoconvex domain is obtained.The results show that the sub-solution is based on the properties of the domain.

参考文献/References:

[ 1] BedfordE, Taylor BA. The Dirichlet problemfor the complexMonge-Amp?re operator [ J]. Invent Math, 1976, 37( 1): 1- 44.
[ 2] LelongP. Plurisubharmonic functions andpositive di-f ferential forms[M]. NewYork, USA: Gordon and Breach, 1969. 1-56.
[ 3] BedfordE, Taylor BA. Anewcapacity for plurisubhar-monic functions[ J]. ActaMath, 1982, 149(1): 1-40.
[ 4] BedfordE. Survey of pluripotential theory, several com-plex variables ( Stockholm 1987/1988) Mathematical Notes38[M]. Princeton, New Jersey, USA: Princeton University Press, 1993. 48-97.
[ 5] CegrellU. On the Dirichlet problemfor the complex Monge-Amp?re operator[ J]. MathZ, 1984, 185( 2): 247-251.
[ 6] Cegrell U, PerssonL. The Dirichlet problemfor the complexMonge-Amp?re operator stability inL 2 [ J]. MichiganMathJourna,l 1992, 39( 1): 145-151.
[ 7] CegrellU, Sadullaev A. Approximation of plurisub-harmonic functions and the Dirichlet problem for the complex Monge-Amp?re operator [ J]. Math Scand, 1993, 71( 1): 62-68.
[ 8] BlockiZ. ThecomplexMonge-Amp?reoperator inplu-ripotential theory[ Z]. Princeton, New Jersey, USA: PrincetonUniversity Press, 1998.
[ 9] Blocki Z. Interior regularity of the complexMonge-Amp?re equation in convex domains[ J]. DukeMath Journa,l 2000, 105( 1): 167-181.
[ 10] Guan B. The Dirichlet problem for complexMonge-Amp?re equationsand regularity of the Green. s func-tion[ J]. Comm in Analysis andGeometry, 1998, 6( 1): 687-703.
[ 11] GuanPengfe.i The extremal functionassociatedto intrin-sic norms[ J]. AnnalsMath, 2002, 156( 1): 197-211.

备注/Memo

备注/Memo:
基金项目: 应用数学湖北省重点实验室开放课题基金(000-024011)
作者简介: 向妮( 1981- ),女,博士,主要研究方向:完全非线性偏微分方程, E-mail: nixiang_810715@yahoo. com. cn。
更新日期/Last Update: 2012-11-19