[1]封晓强,何铁军.基于量子进化算法的交通图像稀疏分解[J].南京理工大学学报(自然科学版),2010,(01):40-45.
 FENG Xiao-qiang,HE Tie-jun.Sparse Decomposition for Traffic Images Using Quantum-inspired Evolutionary Algorithms[J].Journal of Nanjing University of Science and Technology,2010,(01):40-45.
点击复制

基于量子进化算法的交通图像稀疏分解
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2010年01期
页码:
40-45
栏目:
出版日期:
2010-02-28

文章信息/Info

Title:
Sparse Decomposition for Traffic Images Using Quantum-inspired Evolutionary Algorithms
作者:
封晓强;何铁军;
东南大学智能运输系统研究中心
Author(s):
FENG Xiao-qiangHE Tie-jun
Intelligent Transportation System Research Center,Southeast University,Nanjing 210096,China
关键词:
图像处理 交通图像 稀疏分解 量子进化算法
Keywords:
image processing traffic images sparse decomposition quantum-inspired evolutionary algorithms
分类号:
TP391.41
摘要:
为了实现灵活、简洁和自适应地表示交通图像,该文将图像稀疏分解新方法引入到交通图像处理中,提出基于量子进化算法的交通图像稀疏分解方法,以加快对交通图像稀疏表示的处理速度,从而为进一步提取交通参数奠定良好基础。采用非对称图像原子构建交通图像原子库,用寻优能力强和收敛速度快的量子进化算法,实现在过完备图像原子库中搜索最佳匹配交通图像结构的原子,有效地实现对交通图像的稀疏表示。仿真实验结果表明,该方法能对交通图像进行快速、有效地稀疏分解,证实了所提出方法的可行性。
Abstract:
To represent a traffic image in a flexible,sparse and adaptive way,this paper introduces the image sparse decomposition method into traffic image processing and presents a novel traffic image sparse decomposition approach based on quantum-inspired evolutionary algorithms to accelerate the processing speed of traffic image representation,which is helpful to extract traffic feature parameters from images.The sparse representation for traffic images is fulfilled by using nonsymmetrical image atoms to construct a traffic image atom dictionary,and employing the quantum-inspired evolutionary algorithm with strong search capability and rapid convergence to search the best image atom from an over-complete image atom dictionary to match the local structures of traffic images.Simulation experiments show that the introduced method can obtain a sparse decomposition of traffic images in a fast and effective way,which validates the approach presented here.

参考文献/References:

[ 1] ?H ironao K. Introduc tion: Inte lligent transport system sand image inform ation [ J] . Journal of the Institute o fIm age Inform a tion and Te lev ision Eng ineers, 2005,59( 6): 812- 817.
[ 2] Pang C C C, Lam W W L, Yung N H C. A m ethodfor veh ic le count in the presence of m ultiple- veh ic leocclusions in traffic im ages[ J]. IEEE Transactions onInte lligent Transpo rtation System s, 2007, 8 ( 3): 441- 459.
[ 3] 王国良. 图像处理技术在智能交通系统中应用的研究[ D ] . 大连: 大连海事大学信息工程学院, 2008.
[ 4] 丁海玲, 黎明, 林宝军. 基于JPEG2000的交通监控图像高速实时压缩应用仿真研究[ J]. 计算机应用与软件, 2007, 24( 9): 113- 116.
[ 5] Lam W W L, Pang C C C, Yung N H C. V eh ic lecomponent identification based on mu ltisca le tex tu ra lcour iers[ J]. IEEE T ransactions on Inte lligent TransportationSystem s, 2007, 8( 4): 681- 694.
[ 6] 王建英, 尹忠科, 张春梅. 信号与图像的稀疏分解及初步应用[M ]. 成都: 西南交通大学出版社, 2006.
[ 7] M alla t S G, Zhang Z F. M a tch ing pursuits w ith tim e-frequency dictionaries[ J]. IEEE Transactions on S ignal Process ing, 1993, 41( 12): 3397- 3415.
[ 8] 张跃飞, 姜玉亭, 王建英, 等. 基于稀疏分解的图像压缩[ J] . 系统工程与电子技术, 2006, 28 ( 4): 513- 515.
[ 9] Dav is G, M a llat S, Ave llaneda M. Adaptive g reedyapprox im ation[ J]. Journa l o f ConstructiveApprox im ation,1997, 13( 1): 57- 98.
[ 10] H an K H, K im J H. Quantum- inspired evo lutionaryalgor ithm for a c lass o f comb inator ia l optim ization[ J].IEEE Transactions on Evo lutiona ry Com putation,2002, 6( 6): 580- 593.
[ 11] Zhang G X, Rong H N. Rea-l obse rvation quan tum- inspiredevo lutionary algor ithm for a c lass o f num er ica loptim ization problem s[ A] . Proceedings of the 7 th international Conference on Com putationa l Sc ience[ C ].H e idelbe rg, Germ any: Spr inger-Ve rlag, 2007: 989- 996.
[ 12] N arayanan A, M ooreM. Quantum- inspired genetic a-lgo rithm [ A ]. Proceedings o f IEEE Interna tiona l Conferenceon Evolutionary Com puta tion[ C ]. New York,USA: IEEE Press, 1996: 61- 66.
[ 13] Babu G S S, Das D B, Patvardhan C. Rea-l pa ram e terquantum evo lutionary algor ithm for econom ic load dispatch[J]. IET Generation, T ransm ission & D istr ibution,2008, 2( 1) : 22- 31.
[ 14] Luo Z Y, W ang P, L i Y G, e t a.l Quantum- insp iredevo lu tionary tun ing o f SVM param eters[ J] . Progressin N atu ra l Sc ience, 2008, 18( 4): 475- 480.
[ 15] Vandergheynst P, Frossard P. E ffic ient im age representation by an isotropic refinem en t in m atching pursuit[ A ] . Pro ceedings o f IEEE Inte rnational Con ferenceon Acoustics, Speech, and S ignal Processing [ C ].New Yo rk, USA: IEEE Press, 2001: 1757- 1760.

相似文献/References:

[1]娄震,胡钟山,杨静宇.支票自动处理系统中的图像处理及识别[J].南京理工大学学报(自然科学版),1999,(03):85.
 LouZhen HuZhongshan YangJingyu.Applications of Image Processing and Recognition Technology in an Automatic Bankcheck Processing System[J].Journal of Nanjing University of Science and Technology,1999,(01):85.
[2]林昌,康泰兆.基于自组织特征映射的矢量量化方法[J].南京理工大学学报(自然科学版),1999,(05):393.
 Lin Chang Kang Taizhao.A SOFM Algorithm for Vector Quantizing[J].Journal of Nanjing University of Science and Technology,1999,(01):393.
[3]柏连发,张保民.微光图像中值滤波与众值滤波理论与实验研究[J].南京理工大学学报(自然科学版),1995,(02):117.
 Bai Lianfa,Zhang Baomin.Theory and Experiment Study on Low Light Level Image by Median Filter and Mode Filter[J].Journal of Nanjing University of Science and Technology,1995,(01):117.

备注/Memo

备注/Memo:
作者简介: 封晓强( 1972- ), 男, 博士生, 主要研究方向: 视频交通图像识别与控制, E-m a il: fxq90321@ 163. com。
更新日期/Last Update: 2012-11-02