[1]袁夏,赵春霞,张浩峰,等.基于点云数据的自然地形分类算法[J].南京理工大学学报(自然科学版),2010,(02):222-226.
 YUAN Xia,ZHAO Chun-xia,ZHANG Hao-feng,et al.Nature Terrain Classification Using Point Cloud Data[J].Journal of Nanjing University of Science and Technology,2010,(02):222-226.
点击复制

基于点云数据的自然地形分类算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2010年02期
页码:
222-226
栏目:
出版日期:
2010-04-30

文章信息/Info

Title:
Nature Terrain Classification Using Point Cloud Data
作者:
袁夏 赵春霞 张浩峰 蔡云飞
南京理工大学计算机科学与技术学院, 江苏南京210094
Author(s):
YUAN XiaZHAO Chun-xiaZHANG Hao-fengCAI Yun-fei
School of Computer Science and Technology,NUST,Nanjing 210094,China
关键词:
机器人导航 地形分类 点云 复合特征 高斯混合模型
Keywords:
robot navigation terrain classification point clouds multi-feature Gaussian mixture model
分类号:
TP391.41
摘要:
提出一种自然地形分类算法以解决移动机器人导航中的环境理解问题。在单几何特征地形分类方法的基础上,提出的算法使用从点云中提取的复合特征训练分类器。复合特征向量包含一个点几何特征和颜色特征。算法首先计算点的坐标协方差矩阵和平均法向量协方差矩阵的特征值作为几何特征。然后通过标定激光雷达坐标系和相机坐标系使点得到颜色信息,把点的颜色作为颜色特征加入复合特征向量。算法使用最大期望-高斯混合模型(EM-GMM)训练一个分类器,训练数据由人工标注。实验结果表明,与单几何特征分类方法相比,复合特征分类方法在对自然地形分类时能得到更高的正确率。
Abstract:
A nature terrain classification algorithm is proposed to deal with the environment understanding problem in moving robot navigation.Based on the single geometrical feature terrain classification method,a complex feature extracted from point cloud is used to train a classifier.The complex feature vector includes both geometrical feature and color feature of a point.The algorithm computes the eigenvalue of the coordinate covariance matrix and the average normal vector of a point as a geometrical feature.The points obtain color information by matching coordinates of Lidar and camera.The color of points is added into complex feature vector as a color feature.An expectation-maximization Gaussian mixture model(EM-GMM) is employed to train a classifier.The training data are labeled by man.The experimental results show that: compared with the single geometric feature classification method,the complex feature classification method obtains higher correctness in classifying nature terrain.

参考文献/References:

[1]H uang J, Lee A, M um fo rd D. Statistics o f range im ages[ A ]. Proceedings o f the ComputerV ision and Pa-t te rn Recognition [ C ]. Lo s A lam itos, CA, Un ited States: IEEE, 2000: 1324- 1331.
[2] M acedo J, M anduchiR, M atth ies L. Ladar-based d iscr im ina tion o f grass from obstac le fo r autonomous nav-i gation[ A] . Proceedings o f Interna tiona l Sym pos ium on Experim enta l Robotics [ C ]. London, UK: Springer- Ver lag, 2000: 111- 120.
[3] Castano A, M a tthies L. Fo liage d isc im ina tion us ing a rota ting lada r[ A ]. Proceed ings of IEEE Inte rnational Conference on Robotics and Autom ation [ C ]. Lo s A lam itos, CA, United Sta tes: IEEE, 2003: 1- 6.
[4] W e llington C, Stentz A. Learn ing pred iction o f the load-bearing surface fo r autonomous rough-terra in navigation in veg etation[ A ]. Inte rnational Confe rence on Fie ld and Se rv ice Robo tics[ C ]. Los A lam itos, CA, Un ited States: IEEE, 2003: 49- 54.
[5] VandapelN, H uber D, KapuriaA, et a.l Natura l terrain c lassification using 3-D ladar data [ A ]. IEEE International Con ference on Robotics and Automation[ C]. Los A lam itos, CA, Un ited States: IEEE, 2004: 5117- 5122.
[6] S itho le G, Vosselm an G. ISPRS com pa rison of filters [ R]. Delft, Nethe rland: Netherlands Comm ission III W o rking Group 3, De lft Univers ity o f Techno logy, 2003: 1- 29.
[7] 韩光, 赵春霞. 融合多可视化特征的可通行性地形 分类[ J]. 华中科技大学学报( 自然科学版), 2008, 36( SI): 105- 108.
[8] 李旭涛, 彭复员, 曹汉强, 等. 地形表面的自相似程 度与分类感知[ J] . 电子与信息学报, 2007, 29( 6): 1480- 1482.
[9] 王琤, 胡鹏, 刘晓航, 等. 基于数字地形分析的火星 地貌自动化分类方法[ J]. 武汉大学学报(信息科 学版) , 2009, 34( 4): 483- 487.
[10] Vandape lN, HuberD, Kapur iaA, et a.l Natura l terrain classifica tion using 3-D ladar data [ A ]. IEEE Internationa lConference on Robo tics and Automation[ C ]. Los A lam itos, CA, Un ited States: IEEE, 2004: 5117- 5122.
[11] Yuan X ia, Guo Ling, W ang Jian-yu, et a.l E ffic ient K-nearest ne ighbors searching a lgor ithm s for unorganized cloud po ints[ A]. The 7thW or ld Cong ress on Intelligen t Control and Autom ation [ C ]. Chongq ing, Ch ina: Institute o f E lectrical and E lectron ics Eng ineers Inc, 2008: 8507- 8510.
[12] 刘大学, 戴斌, 李政, 等. 一种单线激光雷达和可见 光摄像机的标定方法[ J]. 华中科技大学学报( 自 然科学版), 2008, 36( SI): 68- 71.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 60705020) ?? 作者简介: 袁夏( 1981- ) , 男, 博士生, 主要研究方向: 复杂环境建模, 地面智能机器人自主导航, E-mail: yx lucker @ 163. com; 通讯作者: 赵春霞( 1964- ) , 女, 教授, 博士生导师, CCF会员,
更新日期/Last Update: 2010-04-30